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ABSTRACT
Unfortunately, the repeat rate for all core curriculum courses including 
calculus-I and II, and also math education courses is too high. K-12 
students are barely able to do estimation, an important part of Mathe-
matics, whether it is adding fractions or finding roots, or for that matter, 
simple percent problems. In this paper we present geometric ways to 
reason about approximation of square roots and cube roots that are 
not accessible with simple routine techniques. We combine graphical 
methods, the use of a geometry software (sketch pad) and convergence 
of sequences to find higher order roots of positive real numbers and in 
the process, reason with recursion.

Keywords: square roots, higher order roots, geometry sketchpad, se-
quences, convergence, iterations, recursion.
 

INTRODUCTION
This paper is about recursive reasoning in the context of root extraction 

written with teachers in mind who do not allow calculators in their classes. But, 
as we all know, these days most students grab their calculators in a hurry. Also, 
those who have no calculator, at least a couple of them, would tell you they could 
not find the sum as they forgot their calculator at home. We have personally 
witnessed this scenario from college algebra to higher level math classes and 
throughout our math education classes. Unfortunately, a fix of this problem is 
not on the horizon any time soon. 

An internet search for a quick way to find roots resulted in a few methods, 
mostly based on Vedic Mathematics. Vedic Mathematics is old Indian mathe-
matics rediscovered from Vedas (the oldest Hindu religious scriptures) between 
1911 and 1918 by Bharti Ksna Thirthji (1884 – 1960). This method generally 
requires students to know the squares or cubes of the numbers 1 – 9, and pos-
sibly 11 – 19, depending on how large of a number you are considering to find 
a root for. If the given number is a perfect square or a cube of a number, then 
the examples presented on the internet offer good solutions using Vedic Math-
ematics. 

In this paper we present neat geometric ways to reason about estimation 
of square roots and cube roots that are not accessible with simple routine tech-
niques. We will show that solutions can be found by combining graphical meth-
ods, simple recursive reasoning and the use of a geometry software (sketch pad). 
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Students in high school or in college algebra should be able to understand the 
methods presented and use them for their own problem solving activities. 

In our first example we present a simple recursive sequence graphically, 
with the aim to argue what the ultimate value (the limit) should be. In the second 
example, we present a method to find roots of any order, again using recursion 
and averages. The examples have the same basic solution structure that a math-
ematicians could recognize as an application of the Banach Contraction Princi-
ple (stated at the end of the paper), but without all the advanced mathematical 
reasoning. 

MATHEMATICAL REASONING
In the summer and fall of 2013 we interviewed more than 30 students in-

cluding students registered as math majors and students in the math education 
courses at a university in the southern USA. The objective was to assess the 
mathematical reasoning they used to solve problems at the college algebra level. 
We noticed that many of these students, including the mathematics majors, used 
various preconceived ideas and patterns they got ingrained in their heads since 
their K-12 classes, to get their solutions. They used illogical reasoning in a hap-
hazard way to find a solution, whether right or wrong. Graphs were not a regular 
feature of their arguments and deduction was even rarer. It was clear to us that 
students at all levels needed more instruction in how to construct reasoning, 
how to use mathematical tools and how to deepen their knowledge for problem 
solving. Of course as every mathematician knows, it is a huge task to remedy this 
situation and a single article will not be enough. However, we believe we should 
try and continue in the proper direction. 

We asked the students a simple recursive algorithm: given a sequence
{xn} defined as xn+1 = ½xn + 2, find successive values of xn using x1 = 6.
To test the students we asked the following questions: 
•	 Does the sequence converge, that is: Do the values get closer and closer 

to a fixed number as the values of n get larger?
•	 If it does, can you tell to what number?
Several students were at a complete loss. The students who were willing to 

try were asked to make a conjecture for the ultimate value of xn as n becomes 
large. Most of the students who got the correct answer had little understanding 
of what really was happening, why the values were getting closer and closer to 
each other, and finally reaching to a limit of 4. 

GEOMETRIC METHOD
We present a geometric (graphical) method, as shown below in Figure 1, for 

students to develop a better understanding of the limit of the recursive sequence. 
Since on the line y = x, the x and y values are always equal, we use the graph of 
this line to represent recursion. First we graph the functions F(x) = ½x + 2 and 
H(x) = x. The function H(x) = x is used to visualize recursion and to support the 
reasoning. Next we generate a sequence xn recursively (graphically) as shown in 
Figure 1, with x1 = 6 as our starting point. The graphs serve as a visualization 
of how to find a new value of xn from its previous value. The key component in 
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recursion is the graph of H(x) = x. The red path in the graph from points A to 
B, and B to C to D…E… shows how the recursion is taking place starting with 
x1 = 6.

Figure 1. The recursive values of the sequence in the graph F(x) = ½x + 2 
using H(x) = x.

 
The recursive process can easily facilitate students in making a conjecture 

about the final value of x in just a few iterations. It is fascinating to see how the 
values of H(x) = x are transferred to F(x) and vice versa to continue the recursive 
process. Moreover, this graphical process may help a student to understand the 
algebraic process better, in the sense that the iterative process does converge to 
the point of intersection of the graphs of F(x) and H(x).

FINDING SQUARE AND HIGHER ORDER ROOTS
In 2005 Bryan Dorner (1) published a paper in the College Mathemat-

ics Journal on methods for finding square, cube and higher degree roots with 
techniques that have origins he traced back to Hellenistic geometry and ancient 
Indian algebra. In his paper he described a method for finding any degree roots 
with matrices and vectors. He also mentioned another mathematician, Wassell 
(2), who used arithmetic means (the averages) instead of the geometric mean 
to find square roots (as shown below). For example, assume we want to find 
square root of a number N (not necessarily an integer). Wassell (2) starts with 

an approximate value a, and then computes = c = +

2

=  =
+

2
  . His next guess is the arith-

metic average of a and b, which is = c = +

2

=  =
+

2
  . He then repeats this process, first 

finding = c = +

2

=  =
+

2
  , and then calculating the average of c and d: = c = +

2

=  =
+

2
   as his next 

guess. He then continues the recursive calculations. This process converges fast 
in just a few iterations and your initial guess could be any number smaller than 
N. Since students nowadays dislike fractions they may quickly give up on this 
algebraic process. However, we believe it is to their advantage to carry out these 

3

Elstak and Goel: Connecting Algebra and Geometry to Find Roots

Published by Digital Commons @ the Georgia Academy of Science, 2014



106

iterations algebraically in order to gain a better understanding of the proce-
dure as suggested by Wassell. They will learn how fast this process converges. 
Dorner’s paper describes Wassell’s idea of averages for finding square roots. We 
thought it would work for finding higher degree roots as well, an application we 
could not find in Dorner’s paper (1).

Averages and Recursion for Higher Degree Roots
Assume we want to find cube root of a real number N = 285.33 (the cal-

culator gives 6.583383361 as an answer). We begin with an initial estimate, 
say X1 = 5, which of course is a raw estimate of cube root of N. However, the 
algorithm is amazing. In just a few iterations it provides an estimate very close 

to the actual answer. As we did earlier, we first calculate  = 57.066. We 

continue the division still using the same initial estimate of 5: 
 
= 11.4132. 

Now we find the average of the three numbers 5, 5, and the newly calculated 

number 11.4132: X2 =  = 7.13773333. This is our new 

estimate of the cube root of the number N = 285.33. With this new value the 
process is repeated every time using the average of three numbers: Find X3 = 

 = 6.625322211 which is not too 

far from the actual answer. We will show that in just a couple of iterations we will 
get an answer that is identical to the actual answer up to seven decimal places. 
Tabulating these values we obtain:

Actual cube root to nine decimal places is: 

Geometry Sketchpad 
We will now try to find a geometric connection to the above algebraic for-

mula using a geometry sketch pad convergence of a sequence. We will use 
the same method presented in the first part of this paper: Let N be any real 
number.  We define a sequence of numbers recursively using Xn+1 so that Xn+1 = 

. We will now show graphically the recursive process. First graph 

the functions F(x) =  and H(x) = x. Let N = 285.33. We begin with 
an initial guess of x = 15, and follow it on the graph as in the first part of this 
article with the path from point A to point B, then to points C, D…. From the 
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graph in figure 2 it is clear that this path converges to the point of intersection 
of the graphs of the functions F(x) and H(x), rather quickly. The same recursive 
method works for odd roots, but since even roots of negative numbers are com-
plex numbers we will not discuss this presently.

Figure 2. Recursive process shown graphically: F(x) =  and H(x) = 
x; x> 0.

Algebraically, solving equations F(x) =  and H(x) = x simul-

taneously while equating them to find the point of intersection of these two 

functions, we obtain 2x +  = 3x. It follows that x3 = 285.33. Therefore x 

=  in nine decimals. 
We have shown that with some graphical support we can find cube roots of 

any number with ease. The arguments do not constitute a formal proof, but this 
was not our intention. These results are the products of non-routine reasoning 
and with tools that support visual thinking and are rooted in deductions. Con-
tinuing, we propose the recursive formula to find the 4th root of a real number. 
Let N be any real number. We define a sequence of numbers recursively using 

Xn+1 = . If we solve the equation x = , we obtain 4X4 

= 3X4 + N, which in turn gives x4 = N, or x = .

We can obtain a geometric solution using iterations as above, graphing two 

functions, F(x) = 
 
and H(x) = x on the same axes. We then choose an 

estimate for fourth root of N to be any real number smaller than N, and continue 
the recursive process as above, after making an initial guess for the fourth root 
of N. Generalizing: To find the (n + 1)th root of a real number N, we graph the 

equations F(x) = 
 
and H(x) = x and use an iterative process to find 

the (n + 1)th root of N, first geometrically and then algebraically.
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SUMMARY
We have established a simple iterative process to show a connection be-

tween algebra and geometry to find the nth root of any positive real number. As 
the even roots of a negative number give complex numbers, we have concen-
trated only on positive real numbers. It is nice to see how geometry could play a 
vital role in showing students the actual convergence of a sequence of numbers 
to cube roots, which students only perceive as an algebra problem. The NCTM 
(3) has advocated for the right reasons to show students a connection between 
algebra and geometry whenever possible. The authors tried to show this connec-
tion and have to admit that it was also a learning process for them. 

The interested explorer can construct her/his own activity with higher de-
gree roots, and answer questions such as: What are the limitations for this pro-
cess? What does it teach the young students? We believe a teacher can find 
more about the deeper connections with more advanced mathematics, in this 
case Banach’s Contraction Principle: If X is a closed subset of Rn and F: X → 
X satisfies the condition that || F(x) – F(y) || ≤ K || x–y || with K < 1, then there 
is a unique point p of X, such that F (p) = p; moreover for any point x of X the 
sequence F(x), F (F(x)), F(F(F(x))), … converges to the point p, (|| x || defines 
the norm of X, which in our case is the absolute value of x). Of course there are 
many avenues for explorations. We have just presented one. 
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