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ABSTRACT 

 

A problem that occurs in the use of electrical appliances is overheating. 
Electrical device components require reasonable working temperatures to 
prevent damage and increase efficiency. To gain an understanding of 
overheating we worked with an RLC circuit (a circuit consisting of a resistor, 
an inductor, and a capacitor) to represent a simplified model of an electrical 
component. The behavior of this circuit is similar to that of many electrical 
appliance components because as current flows through the resistor there is a 
rise in temperature due to the resistance to the electric current. Therefore, by 
using the RLC circuit, we can possibly get a better understanding of an 
electrical component’s temperature behavior. We first investigated the 
circuit’s differential equation to find the solution for the current. The derived 
current can be used in the power loss of the resistor, which is equal to the heat 
dissipated from the circuit resistance. To model the cooling of the system we 
added radiation, conduction, and convection terms to the differential 
equation. With each added cooling term the temperature in our system was 
seen to decrease significantly. 
 
Keywords: RLC, circuit, temperature, cooling, overheating, electrical 
appliance, electrical appliance component, power loss, Euler method, 
trapezoid method. 

 
INTRODUCTION 

 

Understanding overheating in electrical appliances is of general interest in science due 
to the amount of damage that is caused because of it. As an electrical device operates it 
also develops heating. Heating is a natural byproduct of mechanical work, and it is 
related to the dissipated energy associated with the electrical current drawn by a device’s 
electrical circuit. Overheating can cause device damage (see, for example, Carson 
Dunlop & Associates 2012) and is detrimental to many electric circuits. It is for this 
reason that ways of cooling electric circuits are incorporated in devices. Cooling can be 
incorporated in a device by means of heat transfer mechanisms, such as radiation, 
conduction, and convection. In this study, we studied cooling by investigating an RLC 
circuit theoretically. Overheating can be a major factor in shortening the life of a device 
if it is not appropriately regulated. Sometimes, it is possible to provide adequate cooling, 
in which case an electrical device may operate efficiently and avoid any permanent 
damage. 
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A direct impact of the modeling we carried out here is the understanding as to how 
temperature run-away can be avoided in an electrical device and prevent overheating. In 
this respect, since the main source of heating takes place in a circuit component through 
which current flows, we modeled a single electric device component as a general RLC 
series circuit, as shown in Figure 1, where V(t) is the time dependent voltage, R is the 
resistance, L is the inductance, and C is the capacitance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
By understanding such component heating characteristics, we hoped to improve the 
circuit’s design as well as its longevity, and, thereby, extend the life of a general 
electrical appliance. This circuit is viewed to have a behavior similar to an electrical 
device component because, due to the current flow, the circuit experiences electrical 
heat loss due to its resistance to current flow. To investigate how the RLC circuit cools 
off, we included cooling mechanisms in our study, such as radiation, conduction, and 
convection. 
 

METHOD 
 

The differential equation for an RLC circuit, not including any cooling mechanisms, is 
written, in the usual way, by the sum of the voltage across each component which is then 
set equal to the voltage source ( ) , where the current (I) is the rate 

of change of the charge (q) over time (t). We have 
 

 . (1) 

 
Since current is dq/dt, we can write this as a second order differential equation for q(t), 

 

 . (2) 

 
For later purposes, we are interested in solving Equation (2), analytically and 
numerically, to find the current behavior. The analytic solution is obtained as the sum of 
two parts, a particular solution (qp) and a homogeneous solution (qh), which will give us 
our full analytical solution (Hasbun 2009). The particular solution can be found by 
using Euler’s identity for complex numbers, 

Figure 1. A typical RLC circuit 
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 . (3) 

 
Using Equation (3) we assume the particular solution for qp(t) in the form 

 
 . (4) 

 
We substitute our solution into Equation (2) and solve for the unknowns, to obtain 

 
 , , γ = ,  , 

 

. 

 

 
We also need to find our homogeneous solution, so we set the right side of our 
differential equation from Equation (2) equal to zero, 

 
 

 
(5) 

 
whose solution for q can be written in the form 

 
 , (6) 

 
where 

 

,    ,   ,  and  . 

 
So at t = 0, we have that . This solution assumes that the initial charge is  

with an initial current of . The full analytical solution to Equation 

(1) is thus, 
 

 . (7) 

 
For later and more complicated extensions of this problem, we wish to compare this 
analytic solution (Equation [7]) against a full numerical solution of Equation (2). To this 
end, we employ the Euler-Cromer method, which is effected, for a second order 
differential equation for q(t), as follows. We let the current and charge at time  be 

 and , respectively, to write 

 

 , (8) 
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where  is some small time increment. The change in current over time isrepresented 

by β, which is a function of time, charge, and current; that is, we write 
 
 

  (9a) 

 
β, referring back to Equation (2), is 

 

 , (9b) 

 
or based on Equations (9), to effect the Euler-Cromer method, we have 

 

 . (10) 

 
As stated before, we compare the numerical solution against the analytical solution to 
check the validity of the numerical approach that will be employed later in more 
complicated cases. Thus, in Figure 2, a comparison between the analytic (Equation [7]) 
and the numeric solution (Equations [8–10]) is made by superimposing them on the 
same graph. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The charge, q, versus time for the analytical and the numerical solution of 
Equation (2). The plot of the analytical solution is used to check the accuracy of the 
numerical Euler-Cromer method. The calculation parameters used here are f = 60 Hz, 
ω = 2πf, R = 20 Ω, L = 0.3 H, C = 5e-5 F, V0 = 20 V. 
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It is seen that the numerical solution obtained using the Euler-Cromer method very 
closely encapsulates the analytic solution. This shows that the Euler-Cromer method is 
accurate enough to describe the RLC differential equation. In fact, a measure of the 
closeness between the two solutions is the measurement of the error 

 
N

2

full i i

i

1
Error= (q (t )-q )

N
 , 

 

which is a small number when the full analytic solution ( full iq (t ) ) of Equation (7) and the 

numeric solution ( iq ) of Equations (7–10) are very close to each other. Yet the error can 

be large when the two solutions deviate from each other drastically. In our case, the 

error has a value of about 66.6 10− , which is extremely good. In Figure (2) a total of over 
1500 points were used in the calculation. Therefore, we employ the same numerical 
method to study a modified version of Equation (1) later below. For the benefit of the 
reader, the appendix shows the MATLAB code that reproduces Figure 2. 
 

POWER LOSS 
 

As mentioned earlier, we wished to model an electrical appliance component’s behavior 
under an applied voltage. To this end, in a standard way (Halliday et al. 1997) to find the 
temperature behavior without cooling, we relate the power loss of the resistor to its heat 
gained, 

 

 . (11) 

 
In this case we use our previously acquired full analytical solution from Equation (7) to 

substitute for the current, , and write Equation (11) as 

 

 . (12) 

 
This equation can be written as 

 

 .  

 
This integral is cumbersome to solve analytically, but since we need to develop a 
numerical approach for more complicated situations later, we proceed with such an 
approach here as well. For this purpose, the numerical scheme adapted here is the 
trapezoidal method, 

 

 , (13) 
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where , and  with n= 0,…, N. Here N is the maximum number of 

points (N 5000), and  is our final temperature value. The temperature of the resistor, 

, is the temperature of our system at time . Also is the temperature of the 

environment, which is set at the room temperature of 298 K. 
 

RADIATION 
 

To improve on Equation (12) and describe our electrical appliance component more 
realistically, we include the resistor’s blackbody properties as it radiates energy. The 
heat loss associated with radiation can be included through the Stefan-Boltzmann law 
(Halliday et al. 1997) or 

 
. 

 
Adding this term to Equation (12) we now have 

 

 , (14) 

 
where, 
 

T = the temperature of the resistor circuit, 
 = the temperature of the environment, 

A = the area of the resistor, 
e = the emissivity coefficient, 

 = the specific heat of the resistor (carbon), 

m = the mass of the resistor, and 
σ = the Stefan-Boltzmann constant. 
 

For our general purposes, we use a common carbon-composite resistor, with a specific 

heat (  of 691  at 298.15 K (Halliday et al. 1997). To effect the numerical solution of 

Equation (14), we employ the previously mentioned Euler-Cromer Method, written as 
 

 , (15) 

 
where  

 
  ,    ,  ,  

 
and  is our final time of interest. 

 
CONDUCTION 
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An even more realistic modeling of an electric appliance component should also include 
a term associated with heat loss due to contact with other devices, i.e. conductive heat 
loss. Here, we include this term in the form of a heat sink (aluminum). The heat sink is 
supposedly in thermal contact with the resistor to draw heat from it. However, it will 
also act as a blackbody and radiate energy. The conduction term is modeled by Fourier’s 
law (Bergman et al. 2011), 

 

, 

 
where k is the conduction coefficient, d is the heat sink thickness, and A is the heat sink 
area. This equation is essentially an expression that says that heat flows from a region of 
higher temperature to a region of lower temperature. Our differential equation to 
include radiation and conduction thus becomes, 

 

 , (16) 

 
where we have specified the fact that both the resistor and the heat sink radiate through 
their combined area ( , with  and AH the resistor and heat sink’s surface 

areas, respectively) since heat is also conducted away through the heat sink. We still 
need to adjust the mass and specific heat term ( ); however, to reflect the system as a 

whole, we make the replacement 
 

 
, 

 
 

where 
 = the mass of the resistor, 

 = the specific heat of the resistor (carbon), 

 = the mass of the heat sink (aluminum), and 

 = the specific heat of heat sink (aluminum). 

 
We use aluminum as the material for the heat sink, whose specific heat capacity is 900 

 at 298.15 K (Halliday et al. 1997). The conduction coefficient, k, is 235  (Cutnell et 

al. 2004). The modified version of Equation (16) becomes 
 

 , (17) 

 
which can be solved numerically by the Euler-Cromer method to write 

 

  , (18) 

 
with,  
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 ,    ,  , 

 
where, as before,  is the final time, and N is the total number of steps used (N 5001). 

 
CONVECTION 

 

In addition to radiation and conduction for heat loss, an electrical appliance component 
can be further cooled through the use of a fan. Adding a fan will cause forced air over the 
surface of the system. In this case, as air passes over the surface of the component, it 
experiences heat loss due to convection. Here, the convection term can be written as 

 
, 

 
where, 

 = the temperature of air forced over the surface, 

 = the temperature of the system, 

= the area of the entire system (the resistor component and the heat sink), and 

h = the convection coefficient for forced air. 
 

With the convection term included the full form of the differential equation is 
 

 , (19) 

 
and the Euler-Cromer method is used to solve it. We write the time dependent 
temperature of the system as, 

 

,  (20) 

 

with , , and , as described before. 

 
RESULTS 

 

Figure 3 shows the obtained results as each cooling term is added. Initially the 
temperature of the resistor circuit and the temperature of the environment are both set 
to 298 K. For the case when the only term included is the power loss due to the resistor, 
the temperature of the system builds linearly at a constant rate, and this trend continues 
until the resistor would more than likely fail. This situation undoubtedly leads to 
overheating. This temperature behavior can be detrimental to any system, and it is the 
reason why the rise in temperature is arrested by transferring heat away from the 
resistor. The resistor radiates energy as well, thus losing some heat, and we can see this 
when the radiation is added. There, the temperature in the system rises temporarily but 
eventually plateaus as the circuit reaches equilibrium at about 298.3 K. Further cooling 
is achieved through conduction, so the temperature behavior with radiation and 
conduction terms included gives a similar trend as the plot with just radiation; however, 
the temperature does not rise as much and the system reaches equilibrium faster (at 
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about 298.2 K). Further cooling is obtained when the convection term is included. 
Generally, the convection involves forced air through the circuit in which the air is cooler 
(room temperature) than operating temperature of the circuit. Adding such term to the 
system, along with the previous two terms, gives rise to a negative slope in the 
temperature, and the slope eventually plateaus when the system reaches equilibrium. 
Finally, and for completeness, we list here the parameters used in creating Figure 3: f = 
60 Hz, ω = 2πf, R = 2Ω, L = 0.3H, C = 5e-5 F, V0 = 20 V, mR = 2x10-4 kg; carbon specific 
heat cp = 691 J/kg*K, T0 = 298 K, σ = 5.67 x 10-8 J/m.s.K4, e = 1; Te = 298 K, cp(R) = 691 
carbon, J/Kg.K, AR = 3 x 10-2 m2, cp(Al) = 900 J/kg*K-Aluminum heat sink, AH = 1.6e - 
5m2, d = 1.327 x 10-2 m (heat sink), aluminum density = 2.7e-3 kg/m3, conductivity 
coefficient k = 235 J/K.s.m, TA = 297 K, ARH = AR + AH, and convection coefficient hA = 
10*ARH(J/m^2.K). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
DISCUSSION 

 

In this paper, we have modeled an electrical appliance component as an RLC circuit. In 
the absence of any cooling the temperature of the circuit rises linearly at a constant rate 
due to current flow resistance. This increase in system temperature causes the 
temperature of the circuit to rise unabatedly. Adding the radiation, conduction, and 
convection heat transfer mechanisms provides enough cooling to lower the system’s 
temperature. With each added term the system shows an improvement in temperature 
control. This study shows that the most effective way to ensure temperature regulation 
is to introduce multiple sources of cooling. The model presented here serves as a 
theoretical method to predict the temperature behavior of electrical appliance 
components. As has been shown, the model is amenable to various forms of cooling and 

Figure 3. Temperature behaviors as time progresses for various forms of 
cooling. 
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the Euler-Cromer numerical method seems to be a useful approach to study the 
temperature behavior. In the appendix, we have provided a MATLAB script that 
reproduces the results of Figure 2, and which is amenable to modification as desired by 
the reader. 
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Appendix: MATLAB Program 
%Plots the Numerical solution, using Euler-Cromer Method, and Analytical 

%solution (soln) for an RLC Circuit (by Kelly Ford & J.E Hasbun 4/19/2018) 

clear; 

t0=0;                                 %initial time 

f=60;                                 %frequency (Hz) 

w=2*pi*f;                             %angular frequency 

R=20;                                 %resistance (ohms) 

L=0.3;                                %induction (Henry) 

C=5e-5;                               %capacitance (Farad) 

V0=20;                                %driving force amplitude 

theta=0;                              %driving force initial phase angle 

wo=sqrt(1/C/L);                       %SHO natural frequency 

tau=2*pi/w;                           %force's period of rotation 

tmax=10*tau;                          %maximum time in terms of tau 

dt=0.0001;                            %step size 

NPTS=(tmax-t0)/dt+1;                  %number of points 

%======================================================================== 

%particular soln (qp) - Analytical 

q0=4e-4;                              %initial charge-Analytic 

I0=3.0;                               %initial current(A)-Analytic 

t=[t0:dt:tmax];                       %time array 

gam=R/2/L;                            %gamma value 

desc1=(2*gam*w).^2+(wo^2-w^2).^2;  

A=V0/L/sqrt(desc1);                   %particular soln amplitude 

den=wo^2-w^2; 
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if den==0, den=1.e-3; end 

if(w < wo) 

  ph=atan(2*gam*w/den);           %Phase difference between voltage and soln 

else 

  ph=pi+atan(2*gam*w/den);        %shift by pi needed if w > wo 

end 

delta=theta-ph;                       %phase shift for qp 

qp=A*sin(w*t+delta);                  %the particular solution 

%======================================================================== 

%homogenous solution (qh) - Analytical 

desc2=wo^2-gam^2;                     %must be positive 

if desc2 <= 0;                        %ensure homogeneous problem conditions 

    disp('gam needs to be smaller');  

    break;  

end 

wu=sqrt(desc2);                       %underdamped homogeneous frequency 

qh=q0*exp(-gam*t).*cos(wu*t);         %homogeneous solution 

%======================================================================== 

%Full Analytical solution (qA) 

qA=qh+qp;                             %full Analytical solution      

%======================================================================== 

%Numerical Solution (qN) - Euler-Cromer Method 

 q0n=q0+qp(1);                        %initial charge-Numerical 

 I0n=(-q0*gam)+(A*w*cos(delta));      %that is [dqh/dt+dqp/dt](t=0) 

 B0=(-q0/C-R*I0n+V0)/L;               %dI/dt (initial rate of current change)  

 V=V0*sin(w*t+theta);                 %initial voltage-Numerical 

 qN(1)=q0n;                                    

 I(1)=I0n;                                      

 B(1)=B0;                                     

 for i=1:NPTS-1 

     I(i+1)=I(i)+B(i)*dt;                       %new current 

     qN(i+1)=qN(i)+I(i+1)*dt;                   %new charge 

     B(i+1)=(-qN(i+1)/C-R*I(i+1)+V(i+1))/L;     %new rate of current change           

 end; 

plot(t,qN,'go',t,qA,'k-'); 

title('Analytical and Numerical Solution','FontSize',8) 

ylabel('q (mA)'); 

xlabel('time (seconds)','FontSize',8); 

legend('Numerical Solution','Analytical Solution') 
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