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  ABSTRACT 

 

Turbulent interactions between Alfvén waves are a common occurrence in 
astrophysical plasma environments. Many experiments have been 
conducted to understand these interactions. In this paper, we describe an 
experiment for the collision of two counterpropagating Alfvén waves. The 
magnetic and electric field data from the collision is used to determine the 
energy density and the energy flux density (or Poynting vector) for the waves. 
Additionally, we discuss some interesting results from a measurement of the 
Alfvén speed when at least one of the Alfvén waves in the experiment has 
multiple, nonzero k⊥ values. 
 
Keywords: Alfvén speed, Alfvén wave, energy density, turbulence, energy 
flux density, Poynting vector, Elsässer probe, Large Plasma Device 

 
1. INTRODUCTION 

 

In most introductory physics and astronomy courses, students are introduced to the 
electromagnetic spectrum, sometimes referred to as Maxwell’s rainbow. The spectrum 
goes from very short wavelength, high frequency waves, such as gamma rays and x-rays, 
to long wavelength, low frequency waves, such as radio or microwaves. Electromagnetic 
waves are transverse, propagating waves that carry energy through space without 
requiring a medium to travel through. However, as the waves travel through interstellar 
space, they encounter different astrophysical environments, most of which are in a 
plasma state (Yiğit 2017). 

A plasma is a gas that has been ionized such that there are many ions and free electrons 
in a specific area of space such that the system is electrically neutral (see Chen 1984). The 
length of that area the plasma covers must be much greater than the Debye length, or the 
distance around a charged particle where the particle no longer can influence another 
charged particle nearby. Additionally, unlike a gas, plasmas exhibit collective behavior 
where a small change in one area of the system can cause a rippling effect throughout the 
entire plasma system. When an electromagnetic wave enters a plasma region, the 
electrons and ions within the plasma can be affected by the presence of the wave. This 
interaction can produce subsequent waves known as magnetohydrodynamic (MHD) 
waves. The type of MHD wave produced depends on if the wave is longitudinal or 
transverse and if the wave is traveling parallel or perpendicular to the background 
magnetic field of the plasma. 
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When an MHD wave is produced that is both longitudinal and is traveling parallel to 
the background magnetic field, this wave is referred to as an Alfvén wave. First predicted 
by Hannes Alfvén in 1942 (Alfvén 1942), Alfvén waves typically have very long 
wavelengths, on the order of hundreds of kilometers, and very low frequencies. These 
waves have been observed in the Earth’s ionosphere (Papadopoulos et al. 1982; Louarn et 
al. 1994), the solar corona (Tomcyk et al. 2007), the solar wind (Unti and Neugebauer 
1968), and the interplanetary medium (Belcher and Davis 1971; Velli et al. 1989). In 
addition, these waves have also been observed in many terrestrial plasma devices, such 
as tokamaks (Appert et al. 1982; Fuchs et al 1995; Huasen and Zhihong 2013) and helical 
plasma chambers (Kolesnichenko et al 2004; Toi et al 2011; Ogawa et al 2012). 

As with any other type of wave, Alfvén waves can interact with each other through 
collision to produce additional effects in the plasma environment. Many theories and 
experiments have been developed to study the interactions between Alfvén waves in these 
various environments (Carter et al. 2006; Howes et al. 2012; Drake et al. 2013). The 
turbulent interaction of counterpropagating Alfvén waves has been shown to explain 
electron acceleration leading to the auroras in the northern hemisphere of Earth (Birn et 
al. 2012; Schroeder et al. 2017), typically referred to as the aurora borealis. Additionally, 
counterpropagating Alfvén waves have been proposed to explain the coronal heating 
problem for the sun (van der Holst et al. 2014). This problem comes from the fact that the 
corona is significantly warmer than the chromosphere, 500,000 K and 8,000 K, 
respectively. The change in temperature happens in such a short distance (~100 km) that 
typical heating mechanisms that are taught in thermodynamics courses cannot explain 
the process. However, the presence of interacting Alfvén waves has been shown to explain 
this extreme change in temperature.  

Although there has been a lot of research conducted on Alfvén waves, there is still 
much that has yet to be understood about this type of MHD wave. One particular piece of 
information that seems to be absent from the literature is the measurement of the 
Poynting vector and energy density during the collision between two Alfvén waves. In this 
paper we measure these values by through an experiment in which two 
counterpropagating Alfvén waves are launched along a magnetically confined plasma 
column, where one of the waves have a nonzero wavenumber (k). In Section 2 we present 
the theory for calculating the energy density and energy flux density as well as the Alfvén 
speed with a wave has a nonzero k⊥ value. Section 3 describes the experiment conducted 
and a little-known tool (the Elsässer probe) that can be used to simultaneously measure 
the magnetic and electric fields for propagating Alfvén waves. Experimental data is used 
to determine the speed of the Alfvén waves using two different methods and comparison 
of the results is given in Section 4.2. Finally, in Section 4.3, we discuss the results of the 
calculation of the energy density and Poynting vector at the interaction of two waves and 
what that data indicates about both parameters in turbulent interactions. 

 
2. THEORY 

 

For most electromagnetic waves, the electric field and magnetic field are related by 
𝐄 𝐁 ⁄ = 𝑐, where c is the speed of light. This equation works well for any electromagnetic 
wave traveling through a vacuum. But inside of a plasma, c is replaced by the group 
velocities (Vg) in order to account for the plasma effects, where the group velocity is 
defined as the speed of the overall wave packet instead of the individual oscillations within 
each packet. Alfvén waves are characterized by having a group velocity (Vg = VA) which 
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can be determine by 𝑉𝐴 = 𝐁0 √𝜇0𝜌0⁄  (Allen et al. 1959). Here B0 is the background 

magnetic field in the plasma, µ0 is the permeability of free space, and ρ0 is the plasma 
mass density. All quantities in this paper are measured in Gaussian cgs units, unless 
otherwise stated, as per the NRL plasma formulary (NRL 2019). 

Another property of any wave is the wavenumber. The wavenumber is defined as the 
total number of wavelengths per unit distance, or 𝑘 = 2𝜋 𝜆⁄ . In a plasma environment, 
the wavenumber will split into two components, one parallel to the wave’s direction of 
motion (k||) and one perpendicular (k⊥) to the motion. One of the problems with the 
equation for the group velocity of an Alfvén wave (VA) is that it only works well when the 
perpendicular wave number, k⊥, is very close to zero (Gekelman et al. 1997). So, at larger 
values of the k⊥, a correction factor (Ccf) must be included in the calculation. 

To determine the correction factor, the equations for magnetohydrodynamics can be 
used since they allow for the study of the evolution of an MHD wave in a plasma 
environment. If the wave speed is substituted with the Alfvén speed, then the MHD 
equations simplify down to a symmetric set of equations for the motion of a wave traveling 
up (z-) the magnetic field or down the magnetic field (z+; Elsässer 1950), 

 

 
𝜕𝑧±

𝜕𝑡
 ∓ 𝑉𝐴 ∙  ∇𝑧± + 𝑧∓  ∙ ∇𝑧± =  

∇𝑝

𝜌0
 . (1) 

 

Here p is the thermal pressure, 𝒛± = 𝐯 ± δ𝐁 √𝜇0𝜌0⁄ , v is the wave speed, and δB is the 

fluctuating part of the magnetic field (here after referred to as the magnitude of the 
magnetic field). Substituting in the fluid velocity for a plasma, 𝐯 =  𝐶𝑐𝑓 𝐄 × 𝐁0 𝐁0

2⁄ , for the 

wave speed, we can see that     
 

 𝑧± =  𝐶𝑐𝑓
𝐄×𝐁0

𝐁0
2 ±  

δ𝐁

√𝜇0𝜌0
 . (2) 

 
Normalizing with respect to 𝑉𝐴𝑩0, we can obtain a relationship for the Alfvén speed to the 
same correction factor, 
 

 𝑉𝐴 =  𝐶𝑐𝑓
𝐸

𝛿𝐵
 . (3) 

 
Then by specifying, without loss of generality, that the linear wave vector for an Alfvén 
wave is 𝐤⊥ =  𝑘𝑥𝑥̂ + 𝑘𝑧𝑧̂ and that the background magnetic field is given by 𝐁0 =  𝐵0𝑧̂, we 
can obtain the correction factor for a wave traveling along the z-axis of a plasma column, 
as discussed in Gekelman et al. (1997), 
 

 
1

𝐶𝑐𝑓
=  ± √(1 + 𝑘𝑥

2𝛿𝑒
2)(1 − 𝜔2 𝛺𝑖

2⁄ ). (4) 

 
Here ω is the plasma frequency determined from 
  

 𝜔 = 5.64 × 104√𝑛𝑒, (5) 
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δe is the electron skin depth given, or the depth to which an external electromagnetic wave 
can penetrate the plasma, by 
 

 𝛿𝑒 = 5.31 × 105 √𝑛𝑒⁄ , (6) 

 
and Ωi is the ion cyclotron frequency, as determined from 
  
 𝛺𝑖 =  𝑍𝑒|𝐵0| 𝑚𝑖⁄ . (7) 
 
Here Z is the ion charge state, e is the charge of the electron, and mi is the mass of the ion 
species. 

As with other electromagnetic and MHD waves, the Alfvén wave stores energy (U) in 
its electric and magnetic field components. In free space, where Vg = c, the energy is 
carried half by the electric field and half by the magnetic field. However, in a plasma 
environment this is not always the case. Since the stored energy will be spread over the 
entire wave, the energy density (u) is more useful to look at then the stored energy (U). 
The energy density, or the energy per unit volume (V), is given by  
 

 𝑢 =  
𝑈

𝑉
=  

1

2
(𝜀0𝐄2 +  

𝐁2

𝜇0
), (8) 

 
where E is the electric field component of the wave, 𝜀0 is the permittivity of free space, 
and B is the magnetic field component of the wave. This value will allow us to see how 
much energy is actually being transported by the wave. 

Another useful parameter when looking at energy is the Poynting vector (S), also 
referred to as the energy flux density. Since power is the rate of change of the energy in 
the system per unit time, S can be used to determine how the energy within an 
electromagnetic wave is being transported. In other words, the Poynting vector is the 
power transported by the wave through an area of space. If S is large, then the power is 
able to be transported easily over large distances without loss of energy into the 
surrounding environment. If S is small, then the power carried by the wave will be lost to 
the plasma environment. The Poynting vector is determined by (Volwerk et al. 1996)  
 

 𝐒 =  
1

𝜇0
(𝐄 ×  𝐁). (9) 

 
3. EXPERIMENTAL APPROACH 

 

The experiment was conducted in the Large Plasma Device (LaPD) at UCLA, a picture of 
the device can be seen in Figure 1. The LaPD is a 20 m long evacuated, cylindrical chamber 
surrounded by solenoids (purple and yellow in the picture) that are capable of producing 
magnetic fields up to 2500 G (Gekelman et al. 1991; Leneman et al. 2006). A barium-
oxide coated cathode is located at one end of the chamber and, in conjunction with an 
anode mesh, is able to produce a magnetically confined plasma of about 16.5 m in length 
with diameters of 40 to 70 cm. Because the shot-to-shot variation in the plasma is 
extremely low, data can be taken by averaging over 10 shots to produce a high signal-to-
noise ratio (Drake et al. 2013). 
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Figure 1. A picture of 
the Large Plasma 
Device at UCLA taken 
by the authors. 

 
The experiment was conducted in a 50% mixture of helium and hydrogen. The 

background magnetic field was set to B0 = 1800 G. We used a Langmuir probe (Chen 
1965) to measure the electron temperature and plasma density. The Langmuir probe 
consists of one wire electrode, which has been biased with a voltage that can be swept 
upward and the current produced on the probe is then measured. Using a plot of current 
versus voltage and equation (2) from Chen (1965), we can determine the different plasma 
parameters. For the experiment presented here, we measured the electron temperature 
to be Te = 7.0 eV and a plasma density of ne = 1.25 × 1012 cm-3. 

Two Alfvén wave antennas were inserted into the plasma perpendicular to the plasma 
column separated by a distance of 15 m (Figure 2). The first antenna is known as the Iowa 
arbitrary spatial waveform (ASW) antenna and it consists of 48 copper meshes spaced 
over an area of 30.5 cm × 30.5 cm (Kletzing et al. 2010). Each grid element is driven 
separately and can be adjusted to a maximum or minimum multiplicative value of 1 or -1. 
The result is a small amplitude Alfvén wave that varies in the x-direction with little 
variation in the y-direction. This means that the value of the perpendicular wave number 
will be greater in the x-direction then in the y-direction. The ASW antenna is capable of 
being tuned to a specific kx value allowing for selection of nonzero kx values for the Alfvén 
wave. For this experiment we tuned the antenna to produce a kx = 0.6 cm-1 wave. 

The second antenna is the UCLA loop antenna (Auerbach et al. 2011). This antenna 
has two overlapping rectangular loops that are 21.5 cm × 29.5 cm. The loops are 
positioned such that they make an X shape on the end, as indicated in the diagram. By 
ensuring that the loops are perpendicular to each other and varying the phase of each 
loop’s signal, a large amplitude Alfvén wave that varies in the y-direction is produced. 
Since the antenna has little deviation in the x-direction, ky = 0.1 cm-1 and kx ~ 0. 
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Figure 2. Schematic for the Alfvén wave collision experiment. 

 
An Elsässer probe (Drake et al. 2011) was used to make simultaneous measurements 

of both the electric and magnetic components of the Alfvén waves. To measure the 
magnetic field component, a thin coil of wire is wrapped tightly around a ceramic stock 
and placed at the end of a larger ceramic tube, as shown in Figure 3. The red and green 
loops on the end indicate the location of the B-dot probes for the Bx and By components 
of a traveling Alfvén wave. When a time varying magnetic field passes through the coil, a 
current is produced in the wire. Measuring the induced current (i) and using Faraday’s 
law, see equation (10), the magnitude of the magnetic field can be determined (Mirnov 
1964).  

 

 𝑖𝑅 =  ε =  −
𝑑φ

𝑑𝑡
 (10) 

 
Here ε is the induced potential in the probe, R is the internal resistance of the probe, and 
φ = ∫ 𝐵 ∙ 𝑑𝐴. The coil is often referred to as a B-dot probe since it measures the time 
varying magnetic field and not the magnetic field directly. 

 

 
 
Figure 3. A three-dimensional CAD 
model of the Elsässer probe. The red 
and green loops on the end indicate the 
location of the B-dot probes for the Bx 
and By components of a traveling 
Alfvén wave. Gray wires show the 
relative position of the electric field 
probes. The total length is 
approximately 2 cm. 

 
For the electric field, two sets of dipole antennas are placed along the larger ceramic 

stalk allowing for simultaneous measurements of Ex and Ey by applying 𝐸𝒓 =  ∆𝑉 ∆𝑟⁄ , 
where ∆𝑉 is the measured potential difference and ∆𝑟 is the distance between the dipoles 
loops in either the x or y direction. The gray wires shown in Figure 3 give the relative 
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position of the electric field probes. The total length from tip of the first B-dot coil to end 
of the second electric field probe is approximately 2 cm. The probe was calibrated 
previously in the paper by Drake et al. (2011). 

 
4. DATA ANALYSIS AND DISCUSSION 

 

Using the Elsässer probe, we measured several characteristic quantities of the Alfvén 
waves produced by both the ASW and loop antennas. The four quantities presented in 
this paper are the oscillating magnetic field components, speed of the wave, energy 
density, and Poynting flux.  
 
4.1 Measurements of Magnetic Fields 

 

We first measured the magnetic field of the wave by using the B-dot probe. The magnetic 

field in the y-direction (By) of the propagating wave for the ASW antenna is shown in 

Figure 4(a) and 4(b). Figure 4(a) gives a two-dimensional plot of the magnetic field at a 

time of t = 10.242 ms, where the wave’s direction of propagation is in and out of the page. 

The figure shows that the magnetic field (measured in milligauss) varies very little in the 

spatial y-direction but the amplitude alternates almost uniformly in the x-direction. In 

Figure 4(b), we see the magnetic field as it propagates through time at the spatial 

coordinate of y = 0 cm. As with Figure 4(a), this one shows an almost uniform oscillation 

in the amplitude of the magnetic field of the propagating Alfvén wave from -25 mG to 

+25 mG. 

(a) (b)  
 
Figure 4. (a) The two-dimensional spatial plot of measured magnetic field By (in milligauss) at time t = 
10.242 ms and (b) a plot of the By as a function of distance and time at the location of y = 0 cm. 

 
The magnetic field for the loop antenna is shown in Figure 5 (measured in Gauss). As 

can be seen from the figures, the loop antenna varies from -2.5 G to 5.25 G in the x-
direction. The figure shows that the magnetic field varies very little in the spatial x-
direction, from -2.5 G to 1.5 G, but alternates almost uniformly in the y-direction. Both 
the Bx component of the ASW antenna and the By component of the UCLA antenna are 
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negligible in comparison to the other component. As such, the ky and the kx components 
for the ASW antenna and UCLA antenna, respectively, are also negligible. 

 

 
 
Figure 5. The figure 
shows the Bx 
component of the 
Alfvén wave created 
by the loop antenna. 

 

4.2 Calculation of Alfvén Speed 
 

One of the benefits of using the ASW antenna is that you can tune the antenna to a 
particular kx value. The antenna was tuned to produce a kx = 0.6 cm-1 wave. After taking 
measurements of both the electric and magnetic fields, a spatial Fourier transform was 
applied to the data to determine the k⊥ value (Drake et al. 2013). We found that there 
were two distinct kx values for our wave, kx = 0.2 cm-1 and kx= 0.6 cm-1. Separating the two 
waves in k-space, an inverse Fourier transform was performed on the data to determine 
the waves magnetic field for each of the k-values. As shown in Figure 6, the wave’s energy 
was split with 90% at 0.2 cm-1 and 10% at 0.6 cm-1. This is a common problem for antennas 
that work with higher kx values since most of the energy will be transferred into any lower 
kx values produced by the antenna. Note that the times are different in the data because 
the results were measured in two consecutive data runs. 

Using 𝑉𝐴 = 𝐁0 √𝜇0𝜌0⁄ , the theoretical value for the Alfvén speed was determined to be 

2.26 × 1010 cm/s. From equations (3) and (4), we found that for the kx = 0.2 cm-1 wave the 
experimental speed was 1.83 ± 0.3 × 1010 cm/s and for the kx = 0.6 cm-1 wave the 

experimental speed was 2.09 ± 0.4 × 1010 cm/s. This is an error of 19% and 7.5%, 
respectively. Other experiments have been conducted with single nonzero kx values and 
the results have indicated very good agreement (<5%) between the theoretical value and 
the value obtained from the correction factors (Drake et al. 2011). However, it is clear 
from this experiment that when the wave splits into multiple nonzero k⊥ values, the 
method produces a difference between the two results with only the higher k⊥ value 
producing a close result with the theoretical value. To first order (one significant figure), 
we can see that the numbers are very close for both k⊥ values. However, this loss of 
precision is not acceptable for most complex models for Alfvén waves and thus the 
accuracy and precision of the results need to be much greater. This result represents the 
first measurement of the Alfvén speed, or group velocity, for a wave containing multiple 
non-zero k⊥ values. 
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Figure 6. The measured magnetic field of the two known kx values in this experiment. The wave’s energy 
is split between the two values with 90% at 0.2 cm-1 and 10% at 0.6 cm-1. 

 
4.3 Measurements of Energy Density and Poynting Vector 

 

Using the measured electric and magnetic field components, the energy density was 
calculated from equation (8). Figure 7 shows the energy density from three different data 
runs. The red graph is the energy density when only the loop antenna was present. In 
black, we show the energy density when only the ASW antenna is present. In both cases 
we can see that the energy density of the wave oscillates periodically with the ASW signal 
significantly smaller, u = 0.2 ± 0.04 J/m3, than that of the loop antenna with an energy 

density maximum of u = 1.4 ± 0.2 J/m3. As can be seen most clearly from the ASW antenna 
graph, both waves carry energy through the plasma region since the increase is only 
present at the same time the wave is present. 

The blue graph shows when both antennas are on at the same time, i.e. simultaneously 
launching Alfvén waves. Here we observe a strong increase in the energy density when 
the two waves interact with an almost doubling in the magnitude of the energy density. 
Using the Elsässer probe, we also mapped a two-dimensional plot of the energy density 
over the entire region where the two antennas are in the plasma, Figure 8. In this figure 
we observe that the energy density has peaks at four distinct points in the plasma column. 
These four points correspond exactly to the location of the four corners of the loop 
antenna. This indicates that the two antennas produce some type of resonance effect 
causing a substantial increase in the energy density. Thus, the turbulent interaction due 
to the interaction of the two waves has no observable effect on the energy density of either 
wave. 
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Figure 7. Overlapping plot of 
the energy densities from three 
data runs: ASW only (black), the 
loop antenna only (red), and 
both on simultaneously (blue). 
The spike in the middle of the 
figure (blue) shows an increase 
in energy density when both 
waves are propagating in the 
plasma. 

 

 

 

 
Figure 8. A contour plot of a 30 
cm × 30 cm area in the discharge 
when both antennas are 
launching Alfvén waves 
simultaneously. The location x = 
0 cm, y = 0 cm is in the middle 
of the plasma chamber. 

 
The Poynting vector was determined by applying equation (9) to the same data as the 

energy density. Looking at the same location in the plasma as in Figure 7, we see in Figure 
9 that the ASW antenna produces a much larger Poynting vector than the loop antenna. 
This means that although the ASW antenna generates a much smaller wave, because it is 
so compact, it is much better at transporting the energy through the plasma column than 
the loop antenna. This indicates that the energy from this Alfvén wave produced by the 
ASW antenna can be transported further even at relatively lower intensity without 
significant losses. 

We also observe in the figure that, unlike the case of the energy density, there is no 
overall increase in the Poynting vector data when the two interact. These observations 
indicate that the Poynting vector is not modified by the turbulent interaction of counter 
propagating Alfvén waves, just as in the case of the energy density In addition, using basic 
physics, and without loss of generality, we can state that the Poynting flux of the daughter 
wave is a linear combination of that produced by the interaction of the two antennas 
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Alfvén waves. This result represents the first time this measurement and calculation has 
been conducted for two counterpropagating Alfvén waves. 
 

 

 
Figure 9. Overlapping 
plots of the Poynting 
vector from three data 
runs described in Figure 7. 

 

 
5. CONCLUDING REMARKS 

 

Although the main focus of this experiment was not on the Alfvén speed, we found some 
interesting results for our experiment. The speed is often approximated from 𝑉𝐴 =

𝐁0 √𝜇0𝜌0⁄ . This equation works very well for environments were the perpendicular wave 

number is very close to zero. At larger values of k⊥, a correction factor can be employed 
to determine the Alfvén speed. However, if the wave splits into multiple nonzero k⊥ 
values, as in our experiment, then the current theory and subsequent equations, 
equations (3) and (4), can only give a first order approximation of the Alfvén speed. As 
such, a more detailed theory needs to be determined for Alfvén waves with multiple 
nonzero k⊥ values. The results presented in this paper are the first measurement of the 
Alfvén speed, or group velocity, for a wave containing multiple nonzero k⊥ values. 

The energy density and Poynting vector were both determined in this experiment 
based on the measured magnetic and electric field components from an Elsässer probe. 
When the energy density was measured for the two-wave interaction, an increase in 
density was observed only when the two antennas launched waves simultaneously. In 
Figure 8, we showed a 2-D spatial plot of the energy density for the experiment. This plot 
indicated that the increase in energy density is more likely to do with a resonant 
interaction between the antennas instead of an interaction between the two waves 
themselves. For the energy flux density, we saw that there was little change in the 
magnitude of the Poynting vector during the turbulent interaction. We also observed that 
the ASW antenna produced a much more compact and higher intensity Poynting vector 
over the UCLA loop antenna. This indicates that the ASW antenna is able to transport its 
energy without much loss of power over the length of the plasma chamber. On the other 
hand, the loop antenna, which has a much higher magnetic field, loses much of its power 
as it travels along the plasma column. Thus, we can conclude that during the interaction 
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of two Alfvén waves, under the conditions identified in this paper, one wave has little to 
no impact on the energy density or energy flux density (Poynting vector) of the other 
wave. 
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