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RANKING VOLATILITY IN BUILDING ENERGY 

CONSUMPTION USING ENSEMBLE LEARNING AND 

INFORMATION ENTROPY 

Kunal Sharma1,  Jung-Ho Lewe2    

Aerospace Systems Design Laboratory 

Georgia Institute of Technology 

 

 
I. Abstract 

 Given the rise in building energy consumption and demand worldwide, energy 
inefficiency detection has become extremely important. A significant portion of the 
energy used in commercial buildings is wasted as a result of poor maintenance, 
degradation or improperly controlled equipment. Most facilities employ sensors to track 
energy consumption across multiple buildings. Smart fault detection and diagnostic 
systems use various anomaly detection techniques to discover point anomalies in 
consumption. While these systems work reasonably well in detecting equipment 
anomalies over short-term intervals, further exploration is needed in finding methods 
that consider long-term consumption to detect anomalous buildings. This paper presents 
a novel approach for a multi-building campus to rank and visualize the long-term 
volatility of building consumption. This allows for the optimal allocation of limited time 
and resources for the detection and resolution of energy waste. The proposed method first 
classifies daily consumption into 5 classes using an ensemble learner and then calculates 
the information entropy on the resulting classification set to determine volatility. The 
ensemble learner receives input from a K-Nearest Neighbor classifier, a Random Forest 
classifier and an Artificial Neural Network. In general, buildings are expected to keep the 
same energy profile over time, all else being equal. Buildings that frequently change 
energy profiles are ranked and flagged by the system for review, which would call for the 
next step to reduce waste and costs and to increase the sustainability of buildings. Data 
on energy consumption for 132 buildings is obtained from energy management at the 
Georgia Institute of Technology. Experimental results show the effectiveness of the 
proposed approach. 
 
Keywords: campus building, energy consumption, pattern recognition, ensemble 
learner, volatility detection  
 

II. Introduction 
Currently, commercial and residential buildings account for roughly 60% of the 

world’s electricity consumption (UNEP 2020). Buildings alone spend 72 percent of U.S. 
electrical energy (DOE 2008). The demand for energy will continue to rise as a result of 
population growth, building comfort level improvement and increased demand.  

Today’s buildings are, however, widely reported to utilize energy inefficiently 
(Ardehali et al. 2003). Between 15% to 30% of the energy used in commercial buildings is 
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wasted by buildings that are deteriorating and maintained poorly with improperly 
controlled equipment desite having sensor and fault detection systems (Schein 2006) – 
(Katipamula et al. 2005). Overall, typical buildings consume 20% more energy than 
necessary due to faulty construction, malfunctioning equipment, incorrectly configured 
control systems and inappropriate operating procedures (Song et al. 2003) – (Wu et al. 
2011). Moreover, anomalous events alone can account for 2% to 11% of the total energy 
consumption for commercial buildings (Heo et al. 2012). Focus of current fault detection 
systems on short-term intervals ignores the energy efficiency gains that can be made by 
considering long-term consumption patterns to identify anomalous buildings.  

A. Literature Review 
One of the most commonly applied techniques in the detection of abnormal 

electrical consumption is anomaly detection. Most applications of anomaly detection are 
specific to the target problem (Chandola et al. 2009). Various methods have been 
explored for processing electricity consumption data. An online contextual anomaly 
detection method is presented by Catterson et al. (2010) to find anomalies in sensor data 
which include loading, temperature, and the network configuration of transformers. A 
multi-agent system is described by McArther to find anomalies in the condition 
monitoring of electrical plant behaviors (McArther et al. 2005). Moreover, Jakkula 
compared different anomaly detection algorithms that identify anomalies in household 
energy consumption (Jakkula et al. 2010). In terms of the specific methods to find 
anomalies, recent papers often implement statistical-based, deviation-based, density-
based and distance-based approaches. Many outlier procedures are based on using 
extreme studentized deviate (ESD) algorithm (statistical theory) and often achieve 
notable results as demonstrated in Seem (2007) and Liu et al. (2010). 

The vast majority of current anomaly detection techniques applied to electricity 
consumption data are focused on the identification of specific point anomalies in the 
dataset. While point anomalies in consumption can be detected through these methods 
reasonably well, there has been little exploration in determining which buildings are 
anomalies in terms of their consumption patterns over a long period. Moreover, it would 
be in the interest of energy management to have a method rank anomalous buildings by 
priority in order to respond appropriately. 

B. Problem Scoping 
To fulfill the gap in identifying buildings with anomolous long-term energy 

consumption patterns, we present a method that first classifies daily consumption 
behavior then calculates the information entropy on the resulting classification set. To 
explore the practical application of our proposed method, we choose one specific multi-
building campus as our case study. The Georgia Institute of Technology is chosen since it 
records the (kWh) energy consumption of each of its 132 campus buildings every 15 
minutes. 

Our research in this paper significantly differs from the previous work as it focuses 
on finding anomalous buildings based on consumption patterns instead of finding 
anomalous points of consumption. To that end, pattern classification and information 
entropy are employed as intermediary steps to visualize and rank long-term building 
consumption volatility. 
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III. Materials & Methods 

A training dataset is used to create a model that classifies a building’s consumption 
over 24 hours into one of 5 archetypical consumption patterns. These 5 archetypical 
consumption patterns were identified under the guidance of energy faculty at Georgia 
Tech. The training dataset contains 2,904 manually labeled classifications of energy 
consumption for all 132 buildings over 22 non-weekend and non-holiday days in 2017. 
The second dataset used contains the energy usage data for all 132 buildings from January 
1st to August 31st, 2018. The classification model classifies every building’s energy usage 
for 161 days, which excludes weekends and holidays. These classifications are used to 
identify the volatility of each building. 

A. Variable Definitions 
Energy management identified 5 distinct daily energy consumption patterns based 

on their expert knowledge and experience with the consumption behaviors of campus 
buildings. The energy consumption behaviors are labeled as concentric, people, 
scheduler, reverse and random. 
 

Table 1: Definitions of Consumption Behavior Types 

 

Behavior 
Type 

Definition 

Concentric The building’s energy consumption is relatively constant throughout 
the day. 

People The building uses more energy during work hours, likely due to 
energy consumption by people (lights, air-conditioning, heating, 
etc.). 

Scheduler The building that operated with a scheduler machine. Noted by 
sudden jumps and drops in energy usage at preset time periods. 

Reverse Energy usage during non-work hours is much higher than the energy 
usage for the rest of the day. 

Random The last catch-all term for erratic patterns that cannot be classified 
into the above four archetypes.  

 
The random class helps classification models that otherwise would be forced to 

classify noisy data as the closest of the four well-defined archetypes. We can visualize the 
“energy signature” of these classification types by graphing a polar plot of energy 
consumption over a 24 hour period. 
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a. Concentric b. People 

 
c. Scheduler 

 
d. Reverse 

 
e. Random 

Figure 1: Energy Consumption Types 

 

B. Data Preprocessing 
For both the training dataset and 2018 consumption dataset, only regular 

weekdays are considered; weekends and holidays are filtered out. Occasional sensor 
failure results in null values in the dataset. These values are replaced with the mean 15-
minute consumption on that day for the building. 

Both datasets are filtered to only include samples where the total energy 
consumption is higher than 125kWh in a day. A threshold is set to remove “Below 
Threshold” samples because preliminary experimentation finds that the energy 
consumption pattern of small buildings is erratic and hinders classification accuracy. 
Furthermore, after talking to faculty managers, we resolved to focus on larger buildings 
as they represent most of campus energy usage. After filtering samples with total 
consumption under 125kWh, the resulting training data has 1,076 instances and is 
unbalanced with “Concentric” representing 73.1% of the data. The filtered data is 
randomly split by an 80:20 train-to-test ratio resulting in 860 training instances and 216 
test instances. 

The training data is a matrix that has a column for every 15-minute interval in a 
day (96 columns) and a unique row for each building and day combination. Every cell 
contains a 15-minute average kW of the associated building on a particular day. The 
training data is normalized using min-max normalization so that the data is scaled to a 
value between 0 and 1. This accelerates the training and performance of the machine 
learning classifier.  

The labeled (target) data is a matrix with each row containing the consumption 
classification for each corresponding row in the training data matrix. The labeled data 
matrix is one-hot encoded, meaning that it has 5 columns, one for each class. Only the 
column that corresponds to the classification will have a value of 1 while the rest have a 
value of 0. For example, a classification of ‘Type 3’ is represented as [0,0,1,0,0].  

Data augmentation is a technique that increases the amount of training data by 
making duplicates with slight augmentations. This technique would improve our model’s 
ability to generalize the 860 training instances to real-world data and reduce the chance 
of our model overfitting. To do this, the daily signature was “rotated” both forward and 
backward by shifting the data by 15-minute intervals 5 times. This encourages the model 
to generalize its understanding of energy signatures within a range of 75 minutes. We did 
not want to increase the range beyond 75 minutes as that could risk creating data that 
may not align with the real-world data. This data manipulation method created 10 
additional instances of every training instance resulting in 9,460 training instances (860 
original samples x 11 instances).  
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Figure 6: Class Frequencies Before Data 

Rotation 

 
Table 2: Class Frequencies Before Data 

Rotation 

 

Class Count Percent
age 

Concentric 787 73.1% 

People 158 14.7% 

Scheduler 80 7.4% 

Reverse 11 1% 

Random 40 3.7% 

Total 1076 100% 
 

C. Classification Algorithms 
Classifying a building’s daily energy consumption is an intermediate step to 

identifying its volatility. In preliminary classification experiments, the following 
classification models were tested: Decision Trees, K-Nearest Neighbors, Artificial Neural 
Networks, Naive Bayes, Logistic Regression, Random Forest, Support Vector Machine 
and Linear Regression. The highest performing models (Random Forest, K-Nearest 
Neighbors, Artificial Neural Networks) were combined to form an ensemble model. Sci-
Kit Learn (sklearn) is a python-based statistics library that was used for the 
implementation of each of the models. 

C.1 Random Forest Classifier (RF) 
The Random Forest algorithm uses a collection of decision trees that “vote” on 

the classification of a data instance (Breiman 2001). A decision tree is a model that 
comes to a classification decision at the leaf node after splitting 
the data into multiple attributes. Data is split based on the 
attribute that best separates the observations by their target 
classes. In a random forest, several decision trees are formed 
from random subsets of the training data. The decision trees 
then “vote” on the classification of new data. Random Forests 
are preferred over a single decision tree as they are less prone to 
overfitting. Our classifier uses the default sklearn parameters 
except for ‘n_estimators,’ which is set to 200. 

Figure 7:  RF Classifier [15] 

C.2 K-Nearest Neighbors (KNN) 
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The K-Nearest Neighbor algorithm looks at the K number of data points closest 
to the new data point (Guo 2012). The closest K data points to 
the new data point are identified based on their distance. The 
majority class of the K nearest points is the classification of the 
new data point. This method is commonly chosen for 
supervised classification tasks for its simplicity and intuitive 
approach.  Our classifier uses the default sklearn parameters 
except ‘k’ is set to 5, ‘p’ is set to 2 and  ‘metric’ is set to 
‘minkowski’. 

 
Figure 8: KNN  Classifier [25] 

C.3 Artificial Neural Networks  (ANN) 
An Artificial Neural Network is a network of nodes that propagate an input 

through a series of functions and output a classification (Sharma 
2012). ANNs have multiple fully-connected layers. Data is 
propagated through the first layer, the input layer, then through a 
number of intermediary layers (hidden layers) before finally 
reaching the output layer for classification. After being given several 
training data instances, the weights across the network are adjusted 
through a process called backpropagation where the error is 
calculated at each layer. Typically more complex data with a larger 
input size will have more layers and more neurons. Our classifier 
has 6 layers with 96, 30, 20, 10, 8 and 5 neurons in each layer, 
respectively. 

Figure 9: ANN Classifier [2] 

C.4 Ensemble Model  
Ensemble modeling is a process that uses multiple models to generate a final 

prediction on unseen data (Opitz 1999). Ensemble models are often used to bring down 
the prediction error of independent base models. Biases 
of any particular model are mitigated when multiple 
models work together. A voting classifier is a simple 
implementation of an ensemble model. Ensemble 
classifiers have been used in the medical field to 
improve breast cancer detection accuracy (Dubey 2019) 
and in the cybersecurity field to improve malware 
detection (Lu 2010). Our ensemble model uses the 
default sklearn parameters for a Voting Classifier 
model. 

Figure 10:  Ensemble Classifier [11] 

D. Information Entropy Calculation 
Information entropy is a measure of how much “information” there is in a set of 

data (Gary 2013). If all of the elements in a set of data are of the same class, the 
information entropy would be zero. If the set of data has more of a “mixture” of other 
classes, then the information entropy increases. The equation for information entropy is 
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presented below. The variable n represents the number of classes in the set of data. Pi 
represents the probability of the ith class occurring in the set of data.  

 
𝐻 = ∑ 𝑃𝑖 ∙

𝑛
𝑖=1 log2 𝑃𝑖     Eq. 1 

 
where the variable n represents the number of classes in the set of data, and Pi represents 
the probability of class i occurring in the set of data. A building’s “volatility” score is 
determined by calculating the information entropy of its set of 24-hour energy 
consumption classifications over a long interval. Our definition of volatility is considering 
the entropy of a building’s consumption between and not within 24-hour intervals since 
we are looking for buildings that are rapidly changing their consumption behavior over 
long intervals. Such buildings that are constantly switching between consumption 
archetypes will be scored as more volatile and are far more suspicious than buildings 
classified with a consistent consumption archetype. 

 
IV. Results 

A. Classification Accuracy 
Each classifier is trained on the training data and evaluated on the test data. As 

expected, the ensemble model performs the best and will be the selected model. 
 

 
Table 3: Classification Accuracies 

 

Model Accuracy 

Random Forest 86.71% 

K-Nearest 
Neighbor 

85.38% 

Artificial Neural 
Network 

85.38% 

Ensemble Model 89.04% 
 

 
Figure 11: Ensemble Model Confusion Matrix 

 
B. Classifying Building Consumption Behavior 

Using the ensemble classifier, we can classify the 24-hour consumption for all 132 
buildings from January 1st, 2018 to August 31st, 2018. Each classification is given a label 
(Table 4) for plotting. 
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Figure 12: Class Type Frequency 

Table 4: Class Type Frequencies 
 

Label Class Count Perc
ent 

-1 Below 
Threshold 

13,157 62.1% 

0 Concentric 6, 259 29.6
% 

1 People 1,333 6.3% 

2 Scheduler 341 1.6% 

3 Reverse 5 0% 

4 Random 77 0.3% 

 Total 21,172 100% 
 

While thresholding does considerably reduce the size of our dataset, the 24-hour 
consumption data points removed represent small buildings with relatively little 
consumption. By removing these erratic below-threshold data, the model’s performance 
improves on buildings that represent a much larger portion of a campus’ total 
consumption and energy costs. 

 
C. Ranking Building Volatility by Information Entropy 

We can calculate the entropy of the consumption behavior classifications for each 
of the 132 buildings. If the buildings that are consistently classified as below-threshold, 
they are filtered out. There remain 59 buildings. Figure 13 features a graph of these 59 
buildings sorted by entropy. 

 
Figure 13: Sorted Entropy of Daily Energy Consumption Classifications for 132 Buildings 
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Buildings in Figure 13 are sorted by their entropy score. Building B37 has an 
entropy of 0, meaning that all its classifications are expected to be of a single type. 
Whereas building B46 has a high entropy of 1.3, meaning that its classifications should be 
heavily mixed. Graphs containing the classifications of B37 and B46 are plotted for the 
first 130 days (out of 161 total days) for visual clarity (Figure 14 & Figure 15). These graphs 
validate the respective entropy score for each building. 

 
Figure 14: B37 Energy Consumption 

Classification 

 
Figure 15: B46 Energy Consumption 

Classification 

Using the entropy of the building’s classifications, we now have a method to rank 
buildings by the highest volatility. A building with relatively high entropy such B46 can 
be flagged as it displays unusual energy consumption behavior. This gives energy 
management a means to prioritize investigations.  
 
E. Visualizing Behavior Classification Entropy over Time 

We can calculate the entropy of a building over a sliding window of time. This 
sliding window approach can summarize the behavior of a building over set time periods 
and help identify increases or decreases in entropy over time. 

Below are the graphs of the entropy of buildings B37 and B46 calculated with a 
sliding window of four weeks. Building B37 still shows constant entropy over time. 
However, with building B46, we can see periods where entropy goes up and down. Energy 
management may be interested in understanding why such trends are present. 

 
Figure 16: B37 28-day Sliding Window 

Entropy of Energy Consumption 
Classifications 

 
Figure 17: B46 28-day Sliding Window 

Entropy 
of Energy Consumption Classifications 

 
We can visualize the changes in entropy with a sliding window for all buildings using a 
heatmap. 
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Figure 18: Entropy of Energy Consumption Classifications for all Above-Threshold 

Buildings calculated with a sliding window of 4 weeks. 
 

V. Discussion 
 

In conclusion, ensemble learning is an effective approach for classifying time series 
data. The ensemble learner included a random forest model, K-Nearest Neighbor model, 
and an artificial neural network model. The classification model and entropy calculations 
were used to summarize, rank and visualize the volatility of a building’s energy 
consumption. These entropy calculations can be used to create a sliding window entropy 
heatmap of all buildings on a campus for energy management to identify and prioritize 
the investigation of buildings that have a higher risk of energy waste. 
        In the future, case studies can be conducted on the buildings that were identified 
by this algorithm to be of high risk. This feedback could be collected in a methodical way 
and integrated into the algorithm. Grid search can be used for parameter optimization for 
the ensemble model classifiers. More specific classifiers can be developed to classify the 
low-consumption cases that were filtered out. Further experiments can be conducted 
using sequential models for classification such as Recurrent Neural Networks which 
exhibits temporal dynamic behavior. Adding more examples for “Reverse” and “Random” 
to the data could help in balancing out the dataset. 
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