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ABSTRACT 

 

Light wave propagation in a periodically stratified medium has many 
applications in physics, mathematics, and engineering. The subject is of 
interest to students, teachers, and researchers, as it presents a great 
opportunity to focus on principles of optics and to understand the basics of 
mathematical modeling. A complete theory of wave propagation can be 
derived using Born’s optics theory. We employed that theory to determine the 
reflectivity of a one-dimensional distributed Bragg reflector (DBR) and do 
simulations using MATLAB. A DBR is a photonic crystal consisting of 
alternating layers of materials with different refractive indices. In this study, 
we modeled theoretical reflectivity of a four-period DBR and compared with 
experimental results previously constructed on a glass substrate and reported 
by DeSilva et al. (2018). Each period consists of a layer of polyvinyl carbazole 
and a layer of cadmium sulfide. We used the Cauchy equation for the 
simulation of the wavelength dependency of the cadmium sulfide refractive 
index in a wavelength range between 400 and 1000 nm. The theory obtained 
a center wavelength and a reflectivity for each of the DBR periods in good 
agreement with the experimental results. Finally, in the appendix, we include 
a simple MATLAB script that demonstrates the application of the theory to a 
DBR. 
 
Keywords: distributed Bragg reflectors, photonic structures, Cauchy 
equation, characteristic matrix. 

 
INTRODUCTION 

 

Light propagation aspects in a dielectric medium including photonic crystals have been 
studied extensively over the past decades (Tkeshelashvili 2013; Joannopoulos et al. 
2008; Cavalcanti et al. 2006; Khreis and Elhassan 2013; Duta et al. 2016). This is due to 
the interesting physics dielectric media possess and their potential applications (Jewell 
at al. 1991; John 1987; Leem at al. 2014; Soman and Anthony 2018; Zeng et al. 2008). 
One such device is called a distributed Bragg reflector (DBR). DBRs are made of 
multiple layers of alternating refractive index materials in a periodic array. Each period 
consists of two different refractive index materials with each layer having a thickness 
equivalent to a quarter of the optical wavelength (Schubert et al. 2007). When light 
waves propagate in such periodic structures, each boundary causes partial reflection 
while the rest of the light is refracted. As the periodicity increases, more light tends to 
reflect and, for a particular wavelength range, it is possible for the device to become a 
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high-quality reflector. The basics of thin film interference are generally used to explain 
that a quality reflector is formed by the combination of many such reflections. This 
happens when each optical layer thickness or path length is equal to one fourth of the 
light wavelength. In a DBR, a stopband occurs for reflected wavelengths in whose range 
no light can be transmitted (Joannopoulos et al. 2008) and, in these situations, the 
device behaves essentially as though it were a mirror; that is, for certain wavelengths. 
Both the reflectivity and the stopband width can be increased by increasing the number 
of periods as well as by increasing the refractive index difference of the alternating 
layers in a period (Joannopoulos et al. 2008). In designing these structures, the device’s 
properties can be manipulated to suit specific applications (Cavalcanti et al. 2006; Leem 
at al. 2014; Jewell at al. 1991; Soman and Anthony 2018; Zeng et al. 2008).  

DBRs are the fundamental constituents in many optoelectronic devices, including 
resonance cavity light emitting diodes that enable photon quantization; these, in turn, 
lead to control spontaneous emission (Jewell at al. 1991; Noda et al. 2007) and 
directionality resulting in vertical cavity surface lasers (Hirose et al. 2014). Vertical 
cavity surface lasers have the advantage over standard edge-emitting lasers because of 
their increased power and efficiency (Hirose et al. 2014; Yu at al. 2018). The literature; 
for example, Khreis and Elhassan (2013), John (1987), Leem at al. (2014), and Zeng et 
al. (2008); abounds with of descriptions of many other devices whose applications take 
advantage of photonic crystals. 

Successful fabrication of such devices requires careful designing through 
mathematical modeling and computer simulations. In our present work, a theoretical 
foundation is found in Principles of Optics (Born and Wolf 1999), which we employed to 
determine the reflectivity of a one-dimensional distributed Bragg reflector. Further, we 
show a comparison between the theory and the data obtained from an organic/inorganic 
hybrid four-period DBR system, which we fabricated previously (DeSilva 2018). In this 
paper we show how the theory makes use of the so-called characteristic matrix in 
obtaining the theoretical reflectivity for a one-dimensional DBR structure. Other 
important properties that the theory allows us to calculate are the center wavelength of 
the DBR’s stopband and the reflectivity maximum at that wavelength. For the purposes 
of the interested reader, in the appendix, a simple MATLAB (2020) program is included 
which conveys the application of the mathematical modeling and which can be used for 
pedagogical as well as for research purposes. 

 
EXPERIMENTAL 

 

The DBR dealt with in this paper consists of alternating layers of poly(9-vinylcarbazole) 
(PVK - organic) and cadmium sulfide (CdS - inorganic) materials. The experimental 
detail of the construction of the DBR follows our previous work (DeSilva 2018). The 
device was fabricated by spin coating (EDC-650-15B, Laurell Technologies Corporation) 
alternating layers of PVK and CdS layers. A 0.2 M solution of thiourea and a 0.1 M 
solution of cadmium nitrate, both dissolved in water via sonication, were combined and 
spin coated at 2,000 RPM upon a glass microscope slide (Fisher Scientific). Each 
sample was then heated for 5 min at a temperature of 1200C to form a nominal thickness 
of 65 nm CdS film. Next a solution consisting of 0.5 g of PVK dissolved in 20.0 g of 
chlorobenzene was applied to the top of the CdS film and spin coated at 1,000 RPM to 
obtain a nominal thickness of 90 nm PVK film. The sample was then heated again at 
1200C for 5 min to allow all of the solvent to evaporate resulting in a single period of the 
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CdS/PVK layers. This procedure was repeated for each period of alternating PVK and 
CdS layers. All chemicals used had a purity of 99% or above and were purchased from 
Fisher Scientific. This paper focuses on Bragg reflectors of 1–4 periods so this process 
was repeated as needed. 

After the DBR was made, it was placed on an optical table where an experimental 
setup (Ocean Optics) for data recording was located. A tungsten halogen light source 
(HL 2000, Ocean Optics) was shined directly at the DBR (the light being normal to the 

interface of the first material) using a 400 m premium grade reflection probe and then 
the data were analyzed from a UV Vis USB4000 spectrometer. 
 

THEORY 
 

It is of much importance for teachers and students alike to acquire an understanding of 
the theoretical application of the concepts mentioned in the introduction, the details of 
which we briefly outline for clarity and pedagogical reasons. The theory considers an 
arbitrary linearly polarized electromagnetic wave propagating in the z-direction towards 

a DBR at an angle of incidence 1  (Born and Wolf 1999). In the special case of linear 

polarization, the electromagnetic wave can be broken down into transverse electric, 
magnetic wave field components and, without loss of generality, the y-z plane is taken to 
be the plane of incidence, as shown in Figure 1. 
 
 
 
 
 

 

n2 

n3 h3 

h2 

n1 (~1, air) 

Layer 1 (PVK) 

Layer 2 (CdS) 

First period 

Glass (nL= 1.5) hL nL 

Layer 1 (PVK) 

Layer 2 (CdS) 

Last period 

Repeating period  

x 

z 

y q1
 

Figure 1. A sketch of a DBR which is a periodic system of alternating layers of two 
different refractive index materials (n2 and n3) with layer thicknesses of h2, h3. The light 
initially incident from a medium with refractive index of n1, which is normally air. The 
substrate has a refractive index of nL of thickness of hL, and θ1 is the initial angle of 
incidence.  
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We assume that field components of waves propagating in the y-direction are 
represented by equations (1–6) (Joannopoulos et al. 2008; Born and Wolf 1999). 

 

( )0( ) ,
i k y t

xE U z e
 −

=   (1) 

( )0( ) ,
i k y t

yH V z e
 −

=   (2) 

( )0( ) ,
i k y t

zH W z e
 −

=   (3) 

( )0( ) ,
i k y t

xH U z e
 −

=   (4) 

( )0( ) ,
i k y t

yE V z e
 −

= −   (5) 

( )0( ) ,
i k y t

zE W z e
 −

= −   (6) 
 

Equations 1–3 and 4–6 correspond to transverse electric and transverse magnetic waves 
respectively (Joannopoulos et al. 2008; Khreis and Elhassan 2013; Born and Wolf 
1999). The quantities U(z), V(z), and W(z) are referred to as the amplitude functions 
(Khreis and Elhassan 2013; Born and Wolf 1999), which are related to one another 
through three equations. Two of these equations are coupled first order linear ordinary 
differential equations and the other equation is an equality stating the proportionality of 
V and W and, for this reason, any information about W can be deduced from V. Since 
the amplitude functions are related to one another, and they are factors in the fields for 
both transverse waves, then the amplitude functions relate the fields of the two waves 
together. 

The amplitude functions can be organized in a 2× 2 square matrix, the characteristic 
matrix, and which is referred to as simply the matrix for the remainder of this paper. 
Maxwell’s equations employ boundary conditions such that U and V are known at the 
plane z = 0. The facts about the matrix are as follows: 

 

(1) since the amplitude functions depend on z, the matrix is a function of z; 
(2) the matrix elements are the particular solutions of the differential equations 

involving U, V; 
(3) because U and V are functions of z, the characteristic matrix itself relates the fields of 

the transverse waves from the plane z = 0 to any other z-plane that is specified, thus 
fully describing the propagation of light in the DBR. 

 

In the case of a DBR consisting of two material layers, we have two matrices, 
 

2 2

22

2 2 2

cos sin
,

sin cos

i

pM

ip

 

 

 
− =

 
−  

  (7) 

3 3

33

3 3 3

cos sin
.

sin cos

i

pM

ip

 

 

 
− =

 
−  

  (8) 

 

These matrices represent the characteristic matrices of the two material layers that 

make up the DBR, where 
0

2
cosq q q qn h


 


= , cosq q qp n = , with 2,3,q = , λ0 is the 

reduced wavelength, nq is the refractive index of the specified material, hq is the 
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thickness of the material, and q is the angle that the incident/transmitted wave makes 

with the axis of stratification (z-axis). In order to get the matrix for one period, we 
simply multiply the two matrices associated with the two layers and obtain the matrix 
 

( )

3
2 3 2 3 2 3 2 3

11 12 2 3 2

2,2

21 22 2
2 2 3 3 2 3 2 3 2 3

3

1 1
cos cos sin sin cos sin sin cos

.

sin cos cos sin cos cos sin sin

p
i

m m p p p
M

m m p
i p p

p

       

       

  
− − +  

    = =    
− + − 
  

  (9) 

 

In our work it is not enough to have the matrix for one period. The matrix for N periods 
is desired for experimental comparison purposes as regards more DBR periods. This is 
accomplished by raising equation (9) to the Nth power which requires more 
computational time than using the alternate procedure illustrated by Born and Wolf 
(1999); that is, matrix theory allows a simple yet effective modification to the matrix 
elements of the matrix for one period. In order to get the matrix for N periods the matrix 
elements for one period are multiplied by a combination of Chebyshev polynomials, δi 
for i = 1,2… N; for example, δ0(x) =1, δ1(x) = 2x, δ2(x) = 4x2-1, δ3(x) = 8x3-4x, etc, 

obtained by 1 2( ) sin ( 1)cos / 1i x i x x − = + −  . 

The final matrix for N periods is shown below, along with the matrix elements 
definitions. 
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3
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  (12) 
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2
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3
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  (14) 

where 

32
2 3 2 3

3 2

1
cos cos sin sin .

2

pp
a

p p
   

 
= − + 

 
  (15) 

 

Our goal was to calculate the theoretical reflectance at each wavelength of the 
electromagnetic spectrum. The reflection coefficient can be put in terms of the matrix 
elements of N periods. The reflection coefficient is given by 
 

( ) ( )
( ) ( )

11, 12, 1 21, 22,

11, 12, 1 21, 22,

N N L N N L

N

N N L N N L

M M p p M M p
r

M M p p M M p
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where 

1 1 1cos , cosL L Lp n p n = = ,  (17) 

. 
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and the reflectance is obtained from 
2

N NR r= ,  (18) 

with θ1 as the initial incident angle (~0) and ( )
2

1 11 sinL L Ln n n = − as the final exit 

angle. The appendix contains a simple version of a MATLAB (2020) script that 
demonstrates the application of the above theory to a DBR. 
 

RESULTS 
 

The physical system studied in this paper deals with four periods. In Figure 2 we show a 
specific example of a structure with two periods. The reason that the thicknesses (h2, h3) 
and the refractive index of cadmium sulfide (n3) are left unknown is that there was not a 
viable way of measuring the thicknesses of the material layers nor was the refractive 
index of CdS initially known. Thus, h2, h3 were obtained through theoretically fitting the 
experimental data (Table I). The refractive index of CdS varies significantly in the region 
of the electromagnetic spectrum range studied; for this reason, a CdS-specific Cauchy 
equation is required. Cauchy’s equation is an empirical relationship between the 
refractive index and the wavelength (Schubert et al. 2007). The Cauchy equation for 
CdS, as employed here, is 
 

( )1 /

3 2 4

E FB C
n A Die



 

− −
= + − − .        (19)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. A sketch of a 2-period DBR example (N = 2) of a system similar to the one 

considered in our study. Both layer thicknesses and the refractive index of CdS, (h3 and n3) 

are experimentally unknown; also, while the PVK refractive index (n2) is known its layer 

thickness (h2) is left unknown. The unknowns are found by theoretical modeling through data 

best fitting. 

 
 
 
 

x 

z 

y 

PVK 

CdS 

Glass (nL= 1.5) 

PVK 

CdS 

N = 2 

01 =  

000293.11 =n  

683.12 =n  

?3 =n  

?2 =h  

?3 =h  

N = 1 

6

Georgia Journal of Science, Vol. 78 [2020], Art. 10

https://digitalcommons.gaacademy.org/gjs/vol78/iss2/10



 
 

Table I shows the parameters used in the Cauchy equation and which were found to give 
the best theoretical fits to the data of Figure 3. The table includes the layer widths 
indicated in Figure 2, corresponding to the PVK and the CdS layers, respectively. Also 
included in this table are the values of the center wavelength (λmax) at which the 
maximum value of the reflectance occurs and whose value is Rmax. 

 

Table I. The parameters obtained for the various periods (N) of our DBR system. The 
parameters A, B, C, D, E, and F are those of the Cauchy equation (19), while h2 and h3 are 
associated with the PVK and the CdS layers’ widths, respectively, for each of the periods, N. The 
value of λmax and Rmax are the center wavelength at which maximum reflectance occurs, 
respectively, in the theoretical plots of Figure 3. 

N h2(nm) h3(nm) A 
B(nm2) 

x104 
C(nm4) 

x104 D E F(nm) λmax(nm) Rmax 

1 50 47.437 2.19 1.93 -1.93 -0.1810 -0.00147 -0.00880 673 0.273 

2 50 65.063 2.4 1.93 -1.93 -0.0486 0.00248 -0.00859 606 0.510 

3 50 59.395 3.08 1.93 -1.93 0.1500 0.00924 -0.00987 621 0.643 

4 92.037 80.530 1.67 1.93 -1.93 -0.1610 0.00669 0.00597 614 0.783 

 
In Figure 3 we show the theoretical curves obtained using equations (18) and (19), 
compared to experimental. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The plot of reflectivity versus wavelength using the Cauchy equation and the fit 
parameters based on equation (19) and the reflectivity R in equation (18). Experimental data 
are represented by dots while the solid line is the simulation in which the Cauchy equation is 
also incorporated to fit the parameters of equation (19). 

Experimental (dots) and theoretical fits (lines) 
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The solid curves are the best fits that could be obtained from the theoretical calculations 
with the parameters shown in Table I, which also includes the two thicknesses of the 
PVK and CdS layers (h2, h3,) mentioned earlier in Figure 2, corresponding to each of our 
N = 1,2,3 and 4 period structures. 
 

CONCLUSIONS 
 

In this paper, light reflectance in a DBR consisting of various periods of alternating 
layers of PVK and CdS has been studied. When white light from a tungsten-halogen 
source was directed normally to the DBR, reflectance maxima from approximately 28%, 
51%, 64%, and 80% for primary wavelengths of 673, 606, 621, and 614 nm, for periods 1, 
2, 3, and 4, respectively, were obtained. This means that a DBR consisting of these 
materials will always reflect this primary wavelength. As can be seen from the 
experiments, the reflectance can be increased by increasing the number of periods of the 
Bragg Reflector. The theoretical calculations are consistent with the experimental 
findings. In the appendix we include a simple version of a MATLAB (2020) script that 
applies the theory to a DBR. For those readers interested in extending this work, a 
further point of research could be performing experiments and theoretical calculations 
with the goal of finding out how many periods are needed to gain as much as 99% 
reflectance for a primary wavelength. This question plays a role in the quest for better 
and higher efficiency future devices. 
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APPENDIX 

 
Below we give a simple MATLAB (2020) script that applies the theory to a Distributed 
Bragg Reflector. 
%script begins here 
%reflectivity_theory_applied.m 
%Calculates the reflectivity versus wavelength for an Np period DBR 
%by J. E. Hasbun and L. Ajith DeSilva 
clear all; 
clc; 
th1=0.0;     %input incident angle in degrees (from the normal) 
pif=pi/180;  %converting factor from degrees to radians 
%Below, note sind is the sin(angle) function for angle in degrees 
n1=1.0;      %incident index of refraction (air) 
ns=1.5;      %substrate index of refraction 
th1=th1*pif; %incident angle in radians 
p1=n1*cos(th1); 
%note: cos(ths)=sqrt(1-sin(ths)^2) and since ns*sin(ths)=n1*sin(th1) 
%sin(ths)=n1*sin(th1)/ns 
ps=ns*sqrt(1-(n1*sin(th1)/ns)^2); 
%matrix elements associated with N periods. A period has two layers 
%composed of indices n2 and n3 
n2=1.63; %constant index of refraction of first layer 
n3=2.72; %constant index of refraction of 2nd layer 
h2=38;   %first layer thickness in nm 
h3=50;   %second layer thickness in nm 
Np=1;    %number of periods of interest 
KF=2;    %interested in these Chebyshev polynomials here (pp 71, Born & Wolf) 
         %KF=2 for Chebyshev polynomial (Second kind) Un(x) in function 
         %ortho_poly.m (from www.mathworks.com/matlabcentral/fileexchange/) 
Nwave_start=400; Nwave_end=1000;   %wavelength range in nm 
Nwave_step=(Nwave_end-Nwave_start)/(Nwave_end-1); 
for k=1:Nwave_end 
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    lambda(k)=Nwave_start+(k-1)*Nwave_step; %wavelength 
    csth2=sqrt(1-(n1*sin(th1)/n2)^2); 
    csth3=sqrt(1-(n1*sin(th1)/n3)^2); 
    bet2=2*pi*n2*h2*csth2/lambda(k); 
    bet3=2*pi*n3*h3*csth3/lambda(k); 
    p2=n2*csth2; 
    p3=n3*csth3; 
    %transfer matrix for the first two layers 
    %matrix for first layer is mb, and 2nd layer is mc 
    %mb=[[cos(bet2),-1j*sin(bet2)/p2];[-1j*p2*sin(bet2),cos(bet2)]]; 
    %mc=[[cos(bet3),-1j*sin(bet3)/p3];[-1j*p3*sin(bet3),cos(bet3)]];   
    %first period matrix is mbc and Np period matrix is mp 
    %mbc=mb*mc; %one period transfer matrix   
    mbc=[[cos(bet2)*cos(bet3)-p3*sin(bet2)*sin(bet3)/p2,... 
          -1i*(cos(bet2)*sin(bet3)/p3+sin(bet2)*cos(bet3)/p2)];... 
         [-1i*(p2*sin(bet2)*cos(bet3)+p3*cos(bet2)*sin(bet3)),... 
          cos(bet2)*cos(bet3)-p2*sin(bet2)*sin(bet3)/p3]]; 
    %p=mbc^Np; %Np period transfer matrix 
    %Chebyshev polynomials of KF kind, at x, of order NC: ortho_poly(KF,x,NC) 
    ax=cos(bet2)*cos(bet3)-0.5*(p2/p3+p3/p2)*sin(bet2)*sin(bet3); 
    unm1=ortho_poly(KF,ax,Np-1); 
    if (Np-2 >= 0),  
        unm2=ortho_poly(KF,ax,Np-2); 
    else 
        unm2=0; 
    end 
    %Np period transfer matrix using Chebyshev polynomials 
    mp=[[mbc(1,1)*unm1-unm2,mbc(1,2)*unm1];[mbc(2,1)*unm1,mbc(2,2)*unm1-unm2]]; 
    %reflection (rn) and transmission (tn) coefficients 
    deno=(mp(1,1)+mp(1,2)*ps)*p1+(mp(2,1)+mp(2,2)*ps); 
    rn=((mp(1,1)+mp(1,2)*ps)*p1-(mp(2,1)+mp(2,2)*ps))/deno; 
    tn=2*p1/deno; 
    %reflectivity (R) and transmissivity (T) 
    R(k)=abs(rn)^2; 
%   T(k)=ps*abs(tn)^2/p1; 
%   S(k)=R(k)+T(k);       %check unity 
end 
plot(lambda,R), xlabel('\lambda'), ylabel('R'), title('Reflectivity vs Wavelength') 
axis([Nwave_start Nwave_end 0 max(R)*(1+0.1)]) 
%script ends here 
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