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OPTIMIZATION OF A BALL’S LAUNCH IN SPORTS 

Andrew C. Smith and Javier E. Hasbun 

Corresponding Author: jhasbun@westga.edu 

ABSTRACT 

Newton's laws are used to study the effects of air resistance on an object's motion. 

In ball-related sports such as baseball, soccer, etc., understanding the effects of air 

resistance is essential to optimize ball launch performance. This performance 

optimization can be studied by identifying the minimal time it takes for a ball with speed 

v  to travel a certain distance. We work with two models that apply to an object's 

motion. One of the models assumes a linear air drag while a second model makes use of 

a quadratic air drag. We do investigate known differential equations for when the 

Magnus force is present as well as absent. This is done through numerical and analytic 

solutions, when possible. The development of approximations leads to differential 

equations that are suitable for time optimization studies The analytic calculations are 

compared to MATLAB's numerical results. We concentrate on situations for which the 

speed of the projectile parallel to the ground is much greater than its speed 

perpendicular to it. 

Keywords: Mechanics, speed, sports, motion, air drag 

INTRODUCTION 

The use of technology in sports allows for a deeper understanding of the physics 
of a sport, leading to increased knowledge and skill of play. In ball-related sports, such 
as baseball, soccer and football, understanding the physics behind projectile motion is 
necessary to optimize performance. Analyzing the effect of air drag is one method allows 
for the optimization of play. Generally, air drag is expressed as a force that acts to 
oppose the velocity of the object. The understanding of the effects of air drag on a ball’s 
travel characteristics enables us to use this knowledge to allocate players in specific 
positions in order to effect an optimal outcome. The optimization in a ball’s launch in 
sports can be identified through the decrease of flight time over a distance. In this 
paper, we consider functions that identify the minimum flight time of a ball between two 
distances. In a linear air drag force model the force is proportional to the negative of the 
velocity, while in the quadratic model the drag force is proportional to the product of the 
speed squared and the velocity unit vector. 

In the work of Goff and Carre (Goff and Carre 2009), the authors discussed the 

trajectory analysis of a soccer ball. In particular they studied the motion of the ball in 

the presence of gravity, drag, and the Magnus force. The drag force on a sports projectile 

has been studied (Mestre 1990) and under low speeds it can be proportional to the 

speed, and in many problems the form of the drag force can be other than linear, for 

example, quadratic, etc. In our work here we consider a linear and a quadratic behavior, 

also, the drag force always points in a direction so as to oppose the projectile’s velocity 

direction. The Magnus force, which is a force that arises due to the projectile’s spin 

while moving through the air has two components. One component produces a lift force; 
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that is, it points perpendicularly to the drag force and remains in the plane formed by 

the velocity unit vector ( v̂ ) and the acceleration due to gravity ( ĵ ). Its direction is 

indicated by the symbolˆ . The other component of the Magnus force is a sideways force 

whose direction is perpendicular to both ˆ  and v̂ . It should be mentioned that the 

Magnus force effect is a particular manifestation of Bernoulli’s theorem: fluid pressure 

decreases at points where the speed of the fluid increases. In the case of a ball spinning 

through the air, the turning ball drags some of the air around with it (Magnus-Effect). 

METHODS 

1.A  General Formulation 

 
According to ref. [1] Newton’s equation of motion associated with a ball traveling 

through the air is written as 
 

= + + +D L Sma F F F mg , (1) 

 

where DF  is the force due to drag, LF is the lift part of the Magnus force, SF is the 

sideways part of the Magnus force, and mg  is the force due to the projectile’s weight, 

with mas the mass of the ball. We note that the forces DF , LF , and SF  have a 

dependence on speed as determined by the drag force. Their main difference however, 
as mentioned above, lies in their direction[1,2]. In a standard (x,y,z) coordinate system, 

while the force due to gravity points in the negative y direction, = − ˆg g j , for the case of 

a drag force that involves a quadratic behavior in speed, the rest of the forces are written 
as  

2 ˆ
D DF v v= − , 

2ˆ
L LF v= ,  

and 
2 ˆ ˆ( )S sF v v=    

with the various  i ’s being the coefficients of proportionality for each i=D, L, and S force 

cases. Here, v  is the magnitude of the ball’s speed, = +ˆ ˆˆ yx
vv

v i j
v v

; that is, in the present 

case, we consider the (x,y) plane of motion alone; and finally, = − +ˆ ˆˆ y x
v v
i j
v v

; i.e., 

perpendicular to v̂ , as stated previously. Since we concentrate on a planar motion, we 

ignore SF  and with the above understanding write our full equations of motion as 

follows 
 

( ) ( ) = + = − + + − + −ˆ ˆ ˆ ˆ ˆ ˆ ˆ
x y D x y L y xma ma i ma j v v i v j v v i v j mg j . (2) 
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 This means that, since a dv dt= , for the case of a quadratic drag behavior, we 

have the coupled system of equations for xv  and yv  given by 

 

 = − + − +2 2 2 2x
D x x y L y x y

dv
m v v v v v v
dt

, (3a) 

and 

 = − + + + −2 2 2 2y

D y x y L x x y

dv
m v v v v v v mg
dt

, (3b) 

 

where, for the magnitude of the velocity we’ve used = +2 2

x yv v v . In a similar fashion, if 

the drag force involves a linear behavior in speed, the forces considered here are now 
ˆ

D DF C vv= − , 

 and 
ˆ

L LF C v= ,  

which now involve coefficients DC and LC for unit consistency. Following a similar 

process as for obtaining equations (3), in this linear case the resulting coupled equations 
(linear coupled approximation or LCA) of motion are 

= − −x
D x L y

dv
m C v C v
dt

, (4a) 

and 

= − + −
y

D y L x

dv
m C v C v mg
dt

. (4b) 

 It is worth noting that both equations (3b) and (4b) for the y motion each 
involves a term that counters the acceleration due to gravity, such terms are due to the 
Magnus effect and lengthen the time a projectile stays aloft. 
In most sports, the general goal of a competition is to hurl a ball with as great amount of 
speed in the x direction as possible. This being the case in our analysis here, we see that 

equations (3) can be simplified if we let x yv v  which leads to the approximation 

+2 2

x y xv v v for the quadratic speed drag case and to replace our equations (3) with  

 = − −2x
D x L x y

dv
m v v v
dt

, (5a) 

and 

 = − + −2y

D x y L x

dv
m v v v mg
dt

, (5b) 

which here are referred to as the (quadratic coupled approximation or QCA) equations 
of motion. Thus, the set of equations (4) and (5) pertain to our analysis here as follows 
below. 
 
1.B Main Approximations 
 

3

Smith and Hasbun: OPTIMIZATION LAUNCH

Published by Digital Commons @ the Georgia Academy of Science, 2023



 In this subsection, we make the decoupled approximations; that is, we modify the 

(LCA) equations (4) by ignoring the coupling between the variables xv  and yv  we then 

have the linear equations of motion (linear decoupled approximation or LDA) as 

= −x
D x

dv
m C v
dt

, (6a) 

and 

= − −
y

D y

dv
m C v mg
dt

. (6b) 

 
 
 If we do the same for the QCA equations (5), we obtain the corresponding 
quadratic equations of motion (quadratic partially decoupled approximation or QPDA) 
are 
 

= − 2x
D x

dv
m v
dt

, (7a) 

and 

= − −
y

D x y

dv
m v v mg
dt

. (7b) 

 
 To assess the significance of these approximations, it is important that we discuss 
the solutions of the various differential equations presented above; that is, the LCA and 
QCA equations (4, 5) as well as the LDA and QPDA equations (6, 7). We do this in the 
following subsection. 
 
1.C Analytic Solutions 
 
 In this subsection we write down analytic solutions (when possible) for the 
various cases discussed in subsections 1.A and 1.B. In the case of the (LCA), we work 

with equations (4), we have for ( )xv t  and ( )yv t , 

 

( )( ) ( )( )
−     

    
    =

t t
2 2 2 2m

x0 y0

2 2

t t
e +cos + - -sin + +

m
( )

m

+

D DC C

L Lm
L D L L D D L

L

x

D

C C
e mgC v C C mgC mgC v C C

C C
v t ,  

 

( )( ) ( )( )
−       

         
=

  

t t
2 2 2 2m

x0 y0

2 2

t t
-e +sin + - +cos + +

m m
( )

+

D DC C

L Lm
D D L D

y

L D L

D L

v

C C
e mgC v C C mgC mgC v C C

C
t

C
, 

 (8a) 
 

with initial speed values x0v . y0v  at t=0, respectively. The  related = ( ) ( )xx t v t dt , 

= ( ) ( )yy t v t dt  results are 
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( )

( ) ( )( )

( ) ( )( )

( )( ) ( )( )

−

 
− + 

 
  

= + +  
  

  
   

  

t
2

2 2 2 2 2

0 0 0

t

2 2 2 2

0 02
2 2

2 2 2 2

0 0

2 gm +m + ( gt+ - )+ +

t
( ) sin - + ( + )

+

t
cos 2 gm+ + - +

D

D

C

m
D L D L L D x L y D L

C

m
L

D L D L L x D y

D L

L
L D y D L D x D L

e C C C C C C v C v x C C

Ce
x t m gm C C C C C v C v

mC C

C
m C C v C C C v C C

m

, 
 

( )

( )( ) ( )( )

( ) ( )( )

( ) ( )( )

( ) ( )( )

−

 
 

  −   
 

  = + +   
 

  − +
 
   +
  

2 2 2 2

0 0

t

2 2 2 2

0 02
2 2

2 2 2 2
t

2 2 2 2

0 0 0

t
sin 2 gm+ + - +

t
( ) cos - + ( + )

+

- t +

+ ( + ) +

D

D

L
L D y D L D x D L

C

m
L

D L D L L x D y

D L

C
D L D D L

m

D L L x D y D L

C
m C C v C C C v C C

m

Ce
y t m gm C C C C C v C v

mC C

gm m C C C C C
e

C C m C v C v y C C





, 

 (8b) 

with respective initial values 0x , 0y at t=0.  

 For the case of the (QCA) of equations (5), no analytic solutions were obtained 
and, later, whatsoever calculations we perform here related to the QCA, we do so 
numerically. For the LDA equations (6) we have for the velocity component solutions, 
 

−

= x0( )
DC t

m
xv t v e , 

 

−   
= − −   

  
y0

1
( ) 1

D DC t C t

m m
y D

D

v t e C v mg e
C

, 

 (9a) 
 
and corresponding ( )x t , ( )y t  components written as 

− 
= − + + 

 
x0 0 x0

1
( ) x

DC t

m
D

D

x t mv e C mv
C

, 

 
 

− −     
= − − + + − +      

      
y0 y0 02

1
( ) y

D DC t C t

m m
D D D

D

y t mg me C t m C m v v e C
C

, 

 (9b) 
 

where x0v . y0v , 0x , 0y  as before.  
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Similarly, we can write the results for the QPDA of equations (7) as 


=

+

x0

x0

v
( )

v
x

D

m
v t

m t
, 





− +
=

+

y0 x0

x0

2 (2 )
( )

2( )

D

y

D

mv gt m v t
v t

m v t
, 

 (10a) 
 
with the associated ( )x t , ( )y t  components given by 

 

 


    
= + − +    

     
0

x0 x0

1
( ) log log xD D

D

m m
x t m t m

v v
, 

 

    




  
+ + − + +  

  
=  

 
 − + 
   

x0 y0 x0 x0 x0 0

x0

2

x0 y0

x0

2

0

2 ( 2 )log ( (2 ) 4 y )
1

( )
4

2 log ( 2 )
v

D D D D D

D

D

x

m
m mg v v t v g m v t t v

v
y t

v m
m mg v v

, 

 (10b) 
and with initial values at t=0 as before. Also, the discussion of each of the analytic 
approximations and their comparison to the associated numerical solutions follows in 
the next subsection. 
 
1.D Comparison among Solutions 
 
 In this subsection, a comparison is made between the various approximations 
presented above; that is, the QCA,  QPDA, LCA, and QDA. The purpose of this 
comparison is to observe  the differences and/or similarities of the various 
approximations under the present conditions. We start by solving equations (5) for the 
QCA, which is the most complicated set of coupled equations studied here. No analytic 
solutions were found and only their numerical results  are shown by the dots in Figure  
1’s left panels for the x(t) and y(t) solutions. The numerical solutions were carried out by 
the Runge-Kutta (2,3) pair of Bogacki and Shampine method (Bogacki and Shampine 
1989) which is used by the MATLAB (MATLAB) function ode23 (ODE23). More 
information as to the numerical solutions of differential equations can be found 
(Hasbun 2008). The derivations, however, of the analytic equations in subsection 1.C 
have been carried out using Mathematica (MATHEMATICA). In a similar way we 
obtained the numerical solutions to the QPDA, equations (7), as shown by the dots in 
Figure 1’s right panels. Since we have analytic solutions for this system, in equations 
(10), they are shown by the superimposed circles. The agreement between the analytic 
and numerical solutions give confidence in the accuracy of the results. While the 
equations are very different, we notice that decoupling the x and y components of the 
differential equations does not change very much the x(t) behavior in the solutions. The 

y(t) motion is different because equations (5) have the extra term in ( )yv t ; i.e., the 
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Magnus force contribution, which tends to keep the projectile aloft for longer time, as 
mentioned before. In the QPDA, that term has been taken out and the observed 
difference is not surprising. However, in our present study, we are more concerned with 
the x(t) behavior which is shown to be described reasonably well with equation (7a) of 
the QPDA.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Proceeding to the linear cases of equations (4) for the LCA and equations (6) for 
the LDA, their results are shown in Figure 2. The left panel are the LCA numerical 
results (dots) using the method mentioned above (Bogacki and Shampine 1989) and the 
circles are the analytic results of equations (8). The right panels are the LDA numerical 
results (dots) and the circles represent the results of the analytic solutions of equations 
(9). First, we notice that the numerical and analytic results for both approximations 
compare very well with one another for both approximations. Furthermore, the x(t) and 
y(t) curves for both approximations compare well with one another. The reason for this 
is that the coupling is not as important for the linear case in addition to the fact that in 
our situation the drag coefficient used is small. In the calculations carried out here in 

Figures 1 and 2, the parameters used are as follows: = 0.14m kg ,  =0.001 /D kg m , 

 =0.015 /L kg m , =0.001 /DC kg s , =0.015 /LC kg s , =x0v 30 /m s , =y0v 5 /m s , 

=0x 0m , and =0 1.8y m for the initial values of x, y speed directions as well as x,y 

positions, respectively. 
 
 
 
 
 
 

Figure 1. The results of the solutions to the QCA equations (5) [left panels] numerically (dots) 
and to the QPDA equations (7) [right panels] numerically (dots) and its analytic solutions 
(circles) of equations (10). The solutions shown are for the x(t) and y(t) components in meters 
and time in seconds. 
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2.A Application Models 
 
 In keeping with the goal of this work, and in the spirit of the previous section, we 
look at the decoupled cases of the linear and the quadratic models above with the goal of 
optimizing the position of a relayed player (relayee) to whom a projectile (ball) is passed 
by an initial player (relayer) farther away. The concept is to find the best position of the 
relayee in order to minimize the time for the projectile to reach a final destination once 
the relayee disposes of the projectile toward its final destination. In the case of baseball, 
considered here as an example, the relayer is an outfielder, the relayee is the shortstop, 
and the final destination is home plate. The equations presented above are already 
involved and the decoupled cases are much easier to analyze. Also, given the favorable 
comparison between the coupled and decoupled equations of the previous section, and 
given the fact that the y-motion is negligibly affected in the cases for which the speed in 
the x-direction is the main factor in the motion, we consider two models. Both obtained 
from the above section. The first model is a linear one, which, from equation (6a), we 
have,  
 

= −
dv

m cv
dt

, (11) 

where since in this analysis we only work in one dimension, we’ve replaced xv  with v  

and also we are using simply c  rather than DC . In the same spirit, the second model is 

the quadratic one of equation (7a) which we write here as  

= − 2dv
m v
dt

, (12) 

Figure 2. The left panels show the results of the solutions to the LCA equations (4) 
numerically (dots) and its analytic results (circles) of equations (8). The right panels show the 
numerical solutions to the LDA equations (6)  (dots) compared to the analytic solutions 
(circles) equations (9). The solutions shown are for the x(t) and y(t) components in meters 
and time in seconds. 
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where we use   rather than D  for simplicity. As before, we keep in mind that  for the 

quadratic model and c  for the linear one use different units; that is, kg/m for the 
quadratic case and kg/s for the linear case. As can be seen, due to the process involved 
in the analysis we are undertaking, equations (11) and (12) are simplified versions of the 
full Newtons’s equations presented in the previous section. 
 
2.B The Linear Model 

 
 Since the solutions to equation (11) are found in equations (9), we rewrite 

−

= 0( )
c
t
mv t v e , (13a) 

and 

− 
= + − 

 
0 0( ) 1

c
t
m

m
x t x v e

c
. (13b) 

According to equation (13b), starting from an initial position 0x  at a speed of 0v  the 

time it takes for the projectile to reach a final distance x  is thus 
 

( ) − −
= −  

 

0 0

0

ln
mv c x xm

t
c mv

. (14) 

 
 We can now specialize to the baseball scenario alluded to previously. The 
outfielder (player 1) is located at L and the shortstop (player 2) is at L-x. Player 1 throws 

the ball at a velocity of 01v  to player 2, who in turn throws the ball at a velocity of 02v  

toward home plate. Here we also assume that there is a time delay, , associated with 
player 2’s throw. Thus the total time it takes for the ball to reach home plate is identified 
as, 
 
T(x) = time it takes player 1’s throw to reach shortstop + delay time  + time it takes 
player 2’s throw to reach home plate.  
 (15) 
 

This scenario is illustrated in Figure 3, where we identify − =1 01x x L  to be the location 

of player 1 and − =2 02x x x  to be the location of player 2.  
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Figure 3. Diagram of certain baseball scenario in which player 1 throws the ball at a distance L-x to 
player 2, who then turns around and throws the ball distance x to home plate. The parameters for this 

scenario are as follows: − = −1 01x x L x , = 90L m , − =2 02x x x , 01 30.67 /v m s , 

=02 35.28 /v m s , = 0.01 /c kg s ,  = 0.14m kg , and  = 0.5t s . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 With the help of the general formula (14), equation (15) becomes a template to 
the situation of interest and leads to  
 
 

( ) − −  −
= − +  −   

  

01 02

01 02

( ) ln ln
mv c L x mv cxm m

T x t
c mv c mv

, (16) 

 
 

where we are letting − = −1 01x x L x , = 90L m , − =2 02x x x , 01 30.67 /v m s , 

=02 35.28 /v m s , = 0.01 /c kg s ,  = 0.14m kg , and  = 0.5t s . Our interest lies in 

optimizing the total ball’s flight time,  so that using equation (16) and setting it’s 
derivative with respect to x equal to zero; that is,  
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Figure 4. Results of min( )T x  for Model 1 produced by MATLAB. Shows a minimum at x=77.2086 

meters at t=3.3033 seconds. The parameters for used are: − = −1 01x x L x , = 90L m , 

− =2 02x x x , 01 30.67 /v m s= , =02 35.28 /v m s , = 0.01 /c kg s ,  = 0.14m kg , and 

 = 0.5t s . 

( )

 
 = − + = 

− − −  01 02

1 1
( ) 0T x m

mv c L x mv cx
, (17) 

and yields the position of player 2 that minimizes the ball’s travel time, or 

( )
( )

 −
= + 

  

02 01

min

1

2 /

v v
x L

c m
. (18) 

 Substituting this minx  back into equation (16) yields the ball’s minimum travel time or, 

    + +   
− −       

       = − + + 
    
    

    

01 02 01 02

min

01 02

2 2 2 2
( ) ln ln

v v v vcL cL
m m

m
T x t

c mv mv
. 

 (19) 
 
 As mentioned before, the speed in the x-direction is the main factor in the 
motion, and that’s what’s considered here, so that for testing the accuracy of these 
results, Equation (16) is plotted as a function of x as shown in Figure 4. Notice that T(x) 
reaches a minimum at x=77.0286 meters which is in agreement with what equation (18) 

obtains for the same parameters; additionally, min( )T x  of equation (19) obtains 3.3033 

seconds which is what the plot of equation (16) shows as its minimum value in Figure 4 
as well. Appendix  A contains the script used to create Figure 4 for the purpose of the 
reader who is interested in experimenting with various parameters using this 
approximation. 
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2.B The Quadratic Model 
 
 In a similar way to what we did in the above subsection, but now working with 
equation (12) whose solutions are given by equations  (10), which we rewrite as 
 


=

+

0

0

( )

1

v
v t

v t
m

, (20a) 

and 





 
= + + 

 

0
0( ) ln 1

vm
x t x t

m
. (20b) 

 

where, again, from (20b) starting from an initial position 0x  at a speed of 0v  the time it 

takes for the projectile to reach a final distance x , for this model is 
 

( )




− 
= − 

 

0

0

( ) 1
x x

m
m

t x e
v

. (21) 

 
Using this equation along with the understanding of equation (15), we arrive at the 
projectile’s flight time for this model as 
 

( )
 

 

−   
= − + + −   

   01 02

( ) 1 1
L x x

m m
m m

T x e t e
v v

, (22) 

whose derivative, as before, is set to zero, to obtain the value of x that minimizes this 
time or 
 



 
= +  

 

02
min

01

ln
2 2

vL m
x

v
, (23) 

which, when substituted back into equation (22) gives the minimum time, 
 

 



      
− − +         

      

 
 − −

= + +  
  
 

02 02

01 01

ln ln
2 2

min

01 02

1 1
( )

v vm m
L L

m v m v
m e e

T x t
v v

. (24) 

 
 Again, the speed in the x-direction being the main factor in our approximation 
here, as in Model 1, equation (22) can be plotted as a function of x as shown in Figure 5. 
Notice that T(x) reaches a minimum at x=45.9783 meters which is in agreement with 

what equation (23) obtains for the same parameters. Also, min( )T x =20.8290 seconds, 

which is what equation (24) obtains.  Similar to the linear model, Appendix  B contains 
the script used to create Figure5 for the purpose of the reader who is interested in 
experimenting with various parameters using this approximation. 
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Figure 5. Results of min( )T x  for Model 2 produced by MATLAB. Shows a minimum at x=45.9783 meters 

at t=20.8290 seconds. The parameters for this plot are: − = −1 01x x L x , = 90L m , − =2 02x x x , 

01 30.67 /v m s= , =02 35.28 /v m s ,  = 0.01 /kg m ,  = 0.14m kg , and  = 0.5t s . 

                                    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3 Further Analysis 

 
 Here we look at a situation where we ignore air drag, so that, referring to Figure 
3, the distance the ball travels due to player 1’s throw is  

= −01 1v t L x  

and the distance the ball travels due to player 2’s throw is 

=02 2v t x , 

where  is the time the ball travels L-x and  is the time of travel x. Thus, using 

( )= −1 01t L x v and =2 02t x v , we have that the total time of projectile travel to home 

plate is 

 
= + − + 

 
total

01 02 01

1 1L
t x t

v v v
. (25) 

  
 Thus, to check the results from the linear and quadratic models, we look at small 

drag coefficients. We use second order expansions; that is, 2ln(1 ) ~ / 2x x x+ −  and  
2~ 1 / 2xe x x+ + . Thus, in the limit of small c, equation (13b) gives 

 

 + −
2

0
0 0( )

2

v ct
x t x v t

m
. (26) 
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so that as →0c , → +0 0( )x t x v t  and player 1’s time 
− −

= =1 01
1

01 01

x x L x
t

v v
while player 2’s 

time is =2

02

x
t
v

for a total projectile time of 
 

= + − + 
 

total

01 02 01

1 1L
t x t

v v v
, which is in 

agreement with the expected result of equation (25) in the limit of small c. In a similar 
fashion, for the quadratic model, using the expansion of the natural log this time, 
equation (20b) gives 
 


 + −

2 2

0
0 0( )

2

v t
x t x v t

m
. (27) 

 

to identify that as  →0 , → +0 0( )x t x v t . We also see here that in the limit of zero  , 

player 1’s time is 
− −

= =1 01
1

01 01

x x L x
t

v v
and player 2’s time is =2

02

x
t
v

to obtain, once again 

the expected result of equation (25) when we add 1t , 2t , and t  in the limit of small  . 

DISCUSSION 

 The purpose of this paper is to study the optimal ball launch performance by 

identifying optimal locations of players. Understanding the effects of air drag on a ball’s 

projectile motion allows us to have a better grasp of the parameters that affect a ball’s 

travel in sports. We investigated the full equations of motion for a ball in flight and 

studied two models (linear and quadratic) of decoupled  equations of motion suitable for 

large speeds parallel to ground. We have applied the two models on a baseball scenario 

and the results from each of the models were tested using a hypothetical set of 

conditions. In the linear model, equation (19) yielded a minimum ball flight time of 

about 3.3 seconds at a distance x of about  77.2 meters. On the other hand, for the 

quadratic model, equation (24) gave a minimum ball flight time of about 20.8 seconds 

at a distance, x, of about 45.98 meters. The results from the linear and quadratic 

models, for the benefit of the reader, can be reproduced using MATLAB’s scripts 

included in appendices A and B.   
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MATHEMATICA (https://www.wolfram.com/mathematica/), a technical computer 

software that is used, among other things, for solving differential equations. 

MATLAB (https://www.mathworks.com),  a matrix laboratory 

ODE23 (https://www.mathworks.com/help/matlab/ref/ode23.html) 

Magnus-Effect (https://www.britannica.com/science/Magnus-effect) 

Mestre, N. D. 1990. The Mathematics of Projectiles in Sports, Cambridge, U. P 

 
APPENDIX A 

This is the script that was used to plot the hypothetical baseball scenario in Model 1. The 

values of the conditions are as follows: ; ; ; 

; ; . 

----------Script Listing---------- 
%model_1.m Plot by Andrew Smith (July 2022) in collaboration with J. E. 
%Hasbun 
clear 
m=0.14;             %Mass of baseball in kg 
v01fs=100;          %speed of ball in ft/s 
v02fs=115;          %speed of ball in ft/s 
conv=3.26;         %number of ft in one meter 
c=0.01;             %Given constant from original problem in kg/s 
L=90;               %Total distance from player 1 to homeplate 
Vo1=v01fs/conv;     %Velocity at which player 1 initially throws the ball 
Vo2=v02fs/conv;     %Velocity at which player 2 initially throws the ball 
delT=0.5;           %turn around time for player 2 
x01=0; 
xmin=x01+20;        %starting point 
xmax=xmin+90.0;     %maximum distance 
N=100; dx=(xmax-xmin)/N; 
x=xmin:dx:xmax;     %distance array (independant var) 
imax=length(x);     %Number of elements in distance array 
for i=1:imax 
    t(i)=-m*log((m*Vo1-c*(L-x(i)))/(m*Vo1))/c+delT-m*log((m*Vo2-c*x(i))/(m*Vo2))/c; 
end 
plot(x,t) 
 
minx=(m*(Vo2-Vo1)/c+L)/2     %in meters 
minxft=minx*conv             %in ft 
 
mint=(-m/c)*(log((m*(Vo1+Vo2)-(c*L))/(2*m*Vo1))+log((m*(Vo1+Vo2)-
(c*L))/(2*m*Vo2)))+delT 
 

APPENDIX B 

This is the script that was used to plot the hypothetical baseball scenario in Model 2. The 

values of the conditions are as follows: ; ; ; 

; ; . 

----------Script Listing---------- 
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%model_2.m by Andrew Smith (July 2022) in collaboration J. E. 
%Hasbun 
clear 
m=0.14;              %mass of baseball 
v01fs=100;           %speed of ball in ft/s 
v02fs=115;           %speed of ball in ft/s 
conv=3.26;           %number of ft in one meter 
gam=0.01;            %Given constant from original problem 
x01=0;               %player 1 position 
%x02=                %player 2 position 
L=90;                %Total distance from player 1 to homeplate 
Vo1=v01fs/conv;      %Velocity at which player 1 initially throws the ball 
Vo2=v02fs/conv;      %Velocity at which player 2 initially throws the ball 
delT=0.5;            %turn around time for player 2 
xmin=x01+20;         %starting point 
xmax=xmin+50.0;      %maximum distance 
N=100; dx=(xmax-xmin)/N; 
x=xmin:dx:xmax;      %distance array (independant var) 
imax=length(x);      %Number of elements in distance array 
for i=1:imax 
    t(i)=(m*((exp(gam*(L-x(i))/m)-1)/(Vo1*gam)))+delT+(m*((exp(gam*x(i)/m)-
1)/(Vo2*gam))); 
end 
plot(x,t) 
minx=((m*log(Vo2/Vo1))/(2*gam))+L/2 
minxft=minx*conv     %in ft 
mint=m*((exp(gam*L/2/m)/sqrt(Vo1*Vo2)-1/Vo1)+exp(gam*L/2/m)/sqrt(Vo1*Vo2)-1/Vo2)/gam 
+ delT 
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