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ABSTRACT 
 

Many interpret error bars to mean that if they do not overlap the difference is 
statistically “significant”. This overlap rule is really an overlap myth; the rule 
does not hold true for any conventional type of error bar. There are rules of 
thumb for estimating P values, but it would be better to show error bars for 
which the overlap rule holds true. Here I explain how to calculate comparative 
confidence intervals which, when plotted as error bars, let us judge significance 
based on overlap or separation. Others have published on these intervals (the 
mathematical basis goes back to John Tukey) but here I advertise comparative 
confidence intervals in the hope that more people use them. Judging statistical 
“significance” by eye would be most useful when making multiple comparisons, 
so I show how comparative confidence intervals can be used to illustrate the 
results of Tukey test. I also explain how to use of comparative confidence 
intervals to illustrate the effects of multiple independent variables and explore 
the problems posed by heterogeneity of variance and repeated measures. When 
families of comparative confidence intervals are plotted around means, I show 
how box-and-whiskers plots make it easy to judge which intervals overlap with 
which. Comparative confidence intervals have the potential to be used in a wide 
variety of circumstances, so I describe an easy way to confirm the intervals’ 
validity. When sample means are being compared to each other, they should be 
plotted with error bars that indicate comparative confidence intervals, either 
along with or instead of conventional error bars. 

 
Keywords: confidence interval, confidence limit, error bar, inferential 
confidence interval, inferential confidence limit, Tukey 

 
INTRODUCTION 

 

A common myth is that when error bars for two samples do not overlap, the difference is 
statistically meaningful, a term I use in place of statistically significant. This overlap rule 
is really an overlap myth; the rule does not hold true for any type of conventional error 
bar. There are rules of thumb for estimating P values from error bars (Cumming et al. 
2007), but it would be better to show bars for which that overlap rule holds true. We could 
quickly assess the statistical meaningfulness of a pattern. 

If we want the overlap rule to hold true, what should we plot as error bars? John 
Tukey gave the answer (see Benjamini and Braun 2002) and suggested that interference 
notches would be a good way to show the intervals graphically (Tukey 1993). Others 
unknowingly repeated Tukey’s work in different ways (Austin and Hux 2002; Knoll et al. 
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2011) with Schuun (1999) using the phrase statistical significance bars and Tryon (2001) 
inferential confidence intervals in place of Tukey’s inference notches. 

None of the proposed terms for these error bars is ideal. All confidence intervals 
are inferential, statistical “significance” is widely misunderstood (which is why I use 
meaningfulness instead)1, and Tukey’s notches cannot be created with spreadsheets. I 
propose comparative confidence intervals (CCIs), preceded by alpha as in 0.05 CCIs. The 
use of alpha reminds us that CCIs are not conventional confidence intervals. 

To facilitate the broader use of comparative confidence intervals, I show here how 
to calculate the CCIs, how the intervals can be used in a variety of settings, and how they 
can be validated. I also explain why box-and-whiskers plots are a good way to show CCIs, 
in place of Tukey’s notches. Schunn (1999) touched on some of the topics I cover here, 
but his approach was mathematical. To make a better case for comparative confidence 
intervals, I use figures instead. 
 

CONVENTIONAL CONFIDENCE INTERVALS 
 

To understand how CCIs are calculated, we must first understand conventional 
confidence intervals. Conventional intervals are calculated by performing null hypothesis 
tests backwards, often single-sample t tests. To explain, consider how we perform a 
single-sample t test forward. We begin with a null hypothesis, such as the population 

mean equals precisely zero ( = 0). It is that numerical precision that makes a null 
hypothesis a null hypothesis (Fisher 1971; reviewed in section 3.3 of Corotto 2022), 
although that precision may be implied rather than explicit. With that null in mind, we 
formulate a prediction, such as the sample mean will be zero to an infinite number of 
decimal places (x̅ = 0). We collect our data and use numerator in the formula for t below 
to compare our outcome to our prediction. 
 

𝑡 =
|�̅�  −  µ|

𝑆𝐸
 

 

We divide that numerator by standard error (SE) to solve for t. With t in hand, we 
use degrees of freedom to determine P. To calculate a confidence interval, we start with a 
P value, such as 0.05, use degrees of freedom to find the t value that goes with that P value, 
i.e., the critical value of t, and multiply that critical value of t by standard error. Since 
standard error is in the denominator of the formula for t, when we multiply the critical 
value of t by standard error, standard error cancels out. We are left with the numerator in 
the formula, which is half of the confidence interval. The mean would be shown plus and 
minus that half-interval. What does that half-interval show? It shows the numerator in 
the formula for t that corresponds to P = 0.05, i.e., the smallest difference between our 
prediction and our outcome that would yield the finding that P is less than or equal to 
0.05. 

Since we begin null hypothesis testing with our null hypothesis it follows that, if 
we conduct a null hypothesis test backwards, our final product should be a null 
hypothesis. Our final product, our confidence interval, is a null hypothesis. In the case of 
performing a single-sample t test backwards, our null is that the population mean lies 

 
1I use meaningfully different, statistically meaningful, and statistically different. “We in the behavioral sciences 
should ‘give’ this word [significant] back to the general public.”—R. Kline (2004). Kline would use “statistical 
difference”, but it is awkward to turn that around and say that a difference is statistical. 
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within the confidence interval. If we set alpha to 0.05, over a lifetime of constructing 95% 
confidence intervals around sample means, the population means will be outside of those 
intervals 5% of the time. Similarly, if we set alpha to 0.05, over a lifetime of testing true 
null hypotheses, we will incorrectly reject 5% of them. But a null hypothesis is infinitely 
numerically precise. Where is the infinite numerical precision in an interval? The 
precision is in the confidence limits. 
 

SIMULTANEOUS CONFIDENCE INTERVALS 

 

Comparative confidence intervals would be most useful when there are multiple 
comparisons being made. We could easily assess the statistical meaningfulness of a 
pattern. When there are multiple comparisons, however, the dogma is that we cannot base 
our confidence intervals on t tests. To explain, suppose we collect samples A, B, and C and 
compare A with B, A with C, and B with C by performing three t tests. The cumulative or 
familywise error risk would be 0.14, not 0.05 (for why it is not 3 × 0.05 = 0.15, see Zar 
2010, pp. 189,190). To keep familywise error at alpha, instead of performing t tests 
backwards to get our intervals, we can perform multiple comparisons tests backwards. 
Good multiple comparisons tests hold familywise error at alpha. The result would be 
simultaneous confidence intervals, simultaneous in that they have been corrected for 
multiple comparisons. Here I use Tukey-Kramer tests, because the Tukey test is highly 
regarded (Zar 2010, p. 232), and the Tukey-Kramer version allows sample size to vary. 
Also, I construct the intervals around the difference between means, not the means 
themselves. 

To illustrate the calculation of simultaneous confidence intervals, I created eight 
samples with similar variances but different sample sizes and performed a 1-way ANOVA 
(Appendixes A and B). The denominator in the resulting F ratio (2.308) is variously 
termed mean square error, MS error, or simply the error term. We will use the last two. 
The error term is important later, but for now we need the degrees of freedom associated 
with it, which is 52 (Appendix B). We use those 52 degrees of freedom; the number of 
categories compared by the ANOVA (typically shown as k in tables), which is eight in this 
case; and alpha (we will use 0.05) to find the corresponding critical value of q (qCV; use 
the table of critical values of q not t). In this case that critical value is 4.466. We calculate 
standard error with the Tukey-Kramer formula, which follows. 
 

𝑆𝐸 = √(
𝑀𝑆 𝑒𝑟𝑟𝑜𝑟

2
) (

1

𝑛1

+
1

𝑛2

) 

 

The two sample sizes are indicated by n1 and n2. We will use sample A and sample F 
(Appendix A) as an example. 
 

𝑆𝐸 = √(
2.308

2
) (

1

5
+

1

7
) 

 

𝑆𝐸 = 0.629 
 

Standard error multiplied by qCV yields a half simultaneous confidence interval of 2.809. 
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For both Tukey and Tukey-Kramer tests, the test statistic q is calculated with the 
formula below 

𝑞 =
|�̅�A  −  �̅�B|

𝑆𝐸
 

 

in which x̅A and x̅B are the two sample means. By performing a Tukey-Kramer test 
backwards, we have solved for the numerator in the formula for q that corresponds to 
P = 0.05. The difference between the two sample means (x̅A – x̅B = –3) plus and minus the 
half simultaneous confidence interval (2.809) constitutes the simultaneous confidence 
interval of –5.809 through –0.191. 

Figure 1 illustrates the results. The differences between every pair of sample means 
are plotted along with a family of simultaneous confidence intervals based on different 
alphas. For samples A and F, –3 is plotted along with bars that end at–5.809 and –0.191, 

 

 
the 95% simultaneous confidence limits. The fact that zero lies outside of the 95% 
simultaneous confidence interval but inside the 99% interval shows that P is less than 
0.05 but greater than 0.01. The actual P value is 0.028 (Appendix C). The error bars 
illustrate the results of Tukey-Kramer tests. 
 

COMPARATIVE CONFIDENCE INTERVALS 
 

One problem with plots like Figure 1 is that we must think about what is being subtracted 
from what to interpret the signs of the outcomes. It is sample mean A minus sample mean 
F, so the negative difference means that F is greater than A, and not the other way around. 
Another problem is that, by showing the differences between the means, we cannot 
compare the means themselves by eye; larger patterns are obscured. It would be better to 
plot the means themselves along with comparative confidence intervals. To calculate the 
CCIs, we simply divide half simultaneous confidence intervals by two. Here is why. 

Consider the comparison of samples A and G (Figure 1). The difference between 
the means is –3 and the upper 95% simultaneous confidence limit lies almost on zero. 
Suppose that limit was just beyond zero, i.e., P = 0.05, and the means themselves were 

 

Figure 1. Some of the pairwise differences among 
the sample means in Appendix A, along with 
conventional simultaneous confidence intervals. 
CL = confidence limit. 
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plotted rather than the difference between them. Those means would be separated by 3. 
If we want bars for which separation indicates that P is less than 0.05, how long should 
they be? They should be half the length of the bar extending from –3 to zero. To calculate 
comparative confidence intervals, we calculate half simultaneous confidence intervals, 
and divide by two. Then we plot the CCIs around means, not differences. The idea goes 
back to John Tukey. Benjamini and Braun (2002) describe his thoughts as follows: 
 

If there exists a distance beyond which the two means are considered separated, 
then an effective graphical display involves drawing an allowance equal to plus 
or minus half that distance around the mean, and noting whether the allowances 
of the pair of means being compared overlap. 

 

In the case of samples A and G, the “distance beyond which the two means are considered 
separated” is the half simultaneous confidence interval of 3. We would plot sample means 
±1.5. See also Figures 7 and 8 in Wainer (1996). 

We will use sample A to show how CCIs are calculated. Because there is only one 
sample, we calculate standard error with the Tukey test’s formula, which is as follows. 
 

𝑆𝐸 =  √
𝑀𝑆 𝑒𝑟𝑟𝑜𝑟

𝑛
 

 

Here is the calculation for sample A. 
 

𝑆𝐸 =  √
2.308

5
 

 

𝑆𝐸 =  0.679 
 

If alpha is 0.05, and there are eight groups, the critical value of q is 4.466, as we saw 
earlier. That critical value multiplied by standard error yields a half simultaneous 
confidence interval of 3.032. We divide that half-interval by two and get 1.516. Bars that 
long would be plotted above and below sample A’s mean of 2 to show 0.05 CCIs, i.e., the 
full interval would be 3.032 long. Comparative confidence intervals are actually half 
simultaneous confidence intervals. 
 

THE SINGLE-SAMPLE TUKEY TEST 
 

Let us indulge ourselves in a brief diversion and consider what type of null hypothesis test 
we just performed backwards. We used q’s distribution and Tukey’s formula for standard 
error, but our intent was to plot each CCI around a sample mean. The numerator for the 
Tukey test, which we might think we were solving for, has two sample means. Instead, we 
were solving for the numerator in the formula for a single sample t test, as shown earlier. 
Not only did we perform a null hypothesis test backwards, the test we performed back-
wards was the elusive single-sample Tukey test. 
 

HOW TO PLOT COMPARATIVE CONFIDENCE INTERVALS 

 

When using comparative confidence intervals, we must assess the degree to which error 
bars overlap with other error bars. This can be difficult if families of CCIs are plotted that 
correspond to different alphas. One way to reduce visual clutter is to plot just two 
intervals. I prefer 0.05 and 0.15 CCIs. (Critical values for 0.15 are available at the bottom 
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of this article’s web page at the Georgia Journal of Science.) I chose 0.05 because it is a 
conventional alpha and 0.15 to hold the risk of a type III (or type S) error around 5% 
(sections 4.9 and 4.12 of Corotto 2022). Another reason to use 0.15 is to highlight close 
calls. If the 0.05 CCIs overlap, but the 0.15 CCIs do not, P is between 0.05 and 0.15; it may 
be worth increasing the sample size or conducting another study to further investigate. 
You, of course, might choose lower alphas. We might instead plot one set of CCIs along 
with another quantity we cannot bear to part with, such as standard error or conventional 
confidence intervals (the latter to make the American Psychological Association happy 
[APA 2020]). We might even plot CCIs based on a multiple comparisons test with CCIs 
based on uncorrected t tests. There are heretics who argue against correcting for multiple 
comparisons (reviewed by Hurlbert and Lombardi 2012). 

Another way to reduce clutter is to use box-and-whiskers plots. In Figure 2, the 
boxes show the 0.15 CCIs and the whiskers 0.05. For example, if we compare sample A 
with sample E, the whiskers do not overlap, and P = 0.022 (Appendix C). If we compare 
samples D and H, the whiskers overlap, but the boxes do not, and P = 0.085. 

 

 

Figure 2. The means in Appendix A, along with 
comparative confidence intervals. CCL = com-
parative confidence limit. 

 
DIFFERING SAMPLE SIZES 

 

When solving for P, the Tukey-Kramer formula is used to calculate standard error when 
sample sizes differ. This means standard error may vary depending on which sample is 
being compared to which. For example, in the comparison of sample A with sample F, we 
found that standard error was 0.629. For samples A and G, however, standard error is 
0.679. Consequently, the conventional simultaneous intervals for the comparison of 
sample A with F are smaller than those for the comparison of A with G (Figure 1). To 
calculate the comparative confidence intervals in Figure 2, I used the Tukey test’s formula 
to calculate standard error, with n varying according to each sample. Do the resulting 
intervals reflect the P values that would be obtained by performing Tukey-Kramer tests 
in which standard error varies? For example, can the CCIs for sample A be compared to 
those for both F and G when Tukey-Kramer tests for those comparisons would entail the 
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use of different standard errors? To find out, I plotted the P values obtained from some 
of the Tukey-Kramer tests (Appendix C) as a function of the distance between the 0.05 
and 0.15 CCIs, choosing results for which sample size varies and P values are low. The 
CCIs reflect the P values almost perfectly (Figure 3). Although sample A, for example, was 
 

 
compared to four different samples with four different sample sizes, the data for those 
comparisons line up with the rest (see the asterisks in Figure 3), and the curves as a whole 
have y-intercepts of 0.05 and 0.15. Large differences in sample size create slight 
anomalies. In the case where both sample sizes are 10, the two curves come close to each 
other while, when both sample sizes are five, they are farther apart (indicated by arrows 
in Figure 3). No doubt this is because different degrees of freedom correspond to different 
distributions of q. When the size of each sample is used to calculate standard error, CCIs 
reflect the results of Tukey-Kramer tests, though the relation between P and the degree of 
overlap or separation is complicated by the use of several distributions. 

 
OTHER TESTS FOR OTHER SITUATIONS 

 

Because comparative confidence intervals can be obtained by performing Tukey tests 
backwards, any way we perform null hypothesis tests forward, to obtain P, we can perform 
backwards, to get CCIs. If we were to compare a number of samples to a single reference 
(such as a control) and not to each other, we could calculate the intervals by performing 
Dunnett’s test backwards. Dunnett’s test is more powerful than Tukey’s. What is 
important is that the critical values are based on the degrees of freedom associated with 
MS error and the total number of groups, since those are the values that would be used 
to conduct Dunnett’s tests in the forward direction, and standard error should be based 
on mean square error as well. If there are only two samples being compared, comparative 
confidence intervals are not too important—there is no larger pattern to assess—but we 
could perform two-sample t tests backwards to get comparative confidence intervals. It 
would just be a matter of using total degrees of freedom to find the critical value of t and 

 

Figure 3. The distance between bars 
representing comparative confidence 
intervals reflects P values calculated with 
the Tukey-Kramer method. Negative x-
values represent overlap of the bars. 
Asterisks indicate comparisons of sample 
A with other samples. Comparative 
confidence intervals are shown in Figure 2. 
Numbers indicate sample sizes for each 
pair of samples being compared. For both 
curves, the samples being compared are as 
follows, upper left to lower right: C and H; 
F and D; E and D; D and H; A and G; A and 
F; A and E; and A and H. CCI: comparative 
confidence interval. 
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using pooled variance to calculate standard error, since pooled variance is the equivalent 
of MS error. 

If sample size varies, standard error can be calculated for each sample based on 
each sample’s size, i.e., as was done for the intervals shown in Figure 2. This method 
works just as well for intervals based on Dunnett’s test and two-sample t tests as for 
intervals based on Tukey tests (the outcomes are similar to what is shown in Figure 3). 
Note that for both t tests and Dunnett’s test, the error term must be multiplied by two 
when calculating standard error. This is not the case when calculating standard error to 
obtain Tukey-based CCIs. 

 
MAIN EFFECTS AND INTERACTIONS 

 

Sometimes null hypothesis tests only tell us what is already obvious once we plot our data. 
Where these tests are particularly helpful is when there are multiple independent 
variables, i.e., a factorial design. Independent variables can have effects on their own, 
main effects, and they can affect each other; they can interact. It is often hard to judge by 
eye whether such an interaction is statistically meaningful or created by sampling error. 
We need to calculate P. To illustrate how we can use CCIs to show these P values, imagine 
we are testing three brands of tire, at the front and rear positions, and determining their 
longevity. If every possible combination of independent variables is represented, we have 
a factorial design (Figure 4). 

With a factorial design, the averages for each combination of every independent 
variable are referred to as cell means, because the averages occupy cells in the matrix that 
illustrates the factorial design, e.g., brand A went an average of 40,000 miles in the front 
position (Figure 4). If we pool the data across the rows or columns, we can calculate 
marginal means that illustrate the main effects of each independent variable. For 
example, the average longevity of brand A is the average of its two cell means, 35,000 and 
40,000 miles, or 37,500 miles, shown in the bottom margin in Figure 4. Similarly, we can 
pool sample sizes and illustrate them in the margins too. Understanding cell and marginal 
means and sample sizes will help us understand how to use comparative confidence 
intervals when there is a factorial design. 
In the case of tire brand and position, we would analyze the results with a 2-way ANOVA, 
because there are two independent variables. The ANOVA would generate F ratios and P 
values for both of the main effects (tire and position) and also for the interaction. If there 
is a statistically meaningful main effect of tire, we might plot the marginal means of the 
three brands along with comparative confidence intervals to illustrate which brand is 
statistically different from which. The CCIs would be based on whatever test we would use 
to compare the three brands. Here Tukey-Kramer tests would be appropriate because 
sample size varies. We would use the number of groups being compared (three) and the 
degrees of freedom associated with MS error to find the critical value of q. To calculate 
standard error, we would use MS error for variance; we are assuming equal variances, so 
the best estimate is that error term; and the marginal samples sizes for each group, e.g., 
39, 40, and 40 in the example shown in Figure 4. The resulting CCIs would be plotted 
around the marginal means for tire to illustrate the results of Tukey-Kramer tests. 

There would be no reason to investigate the main effect of position, since our 
interest is in tire brand but, if we did want to plot the marginal means for front and rear, 
we could base our comparative confidence intervals on a two-sample t test. To calculate 
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Figure 4. A factorial design in which the longevity of three brands of car tire 
are compared at the front and rear positions. Longevity is in thousands (k) of 
miles. Sample size is indicated by n. 

 
standard error, we would use MS error for variance and the marginal sample sizes of 59 
and 60. If there were three positions, as would be the case when towing a small trailer, 
then we might base our CCIs on Tukey-Kramer tests, not t tests. 

If the interaction is statistically meaningful, it means that we can exclude chance 
as the sole cause of a difference among differences. For example, there is a greater 
difference between brands A and B when they are at the front position than when they are 
at the rear. Is that difference in differences statistically meaningful? Is that why P is less 
than or equal to alpha for the interaction? To find out, we might plot CCIs based on two 
sets of multiple comparisons tests, one for front and one for rear; or plot CCIs based on 
three two-sample t tests, one for each brand. The latter makes more sense since our 
interest is in tire. Either way, the CCIs would be plotted around the cell means to illustrate 
the interaction. Error bars must always be explained, so we would make clear that the 
error bars can only be used for comparing across the brands within each position or vise 
versa. 
 

AREAS FOR FUTURE STUDY 

 

I know of two situations in which there are problems with comparative confidence 
intervals. One is when there is heterogeneity of variance. The other can arise when there 
are repeated measures. Repeated measures require the data to display sphericity: all 
samples must correlate to each other to the same degree. Concerns regarding both 
variance and sphericity are often addressed the same way, by testing the null hypothesis 
that variances are uniform and sphericity is perfect. This practice presents two problems. 
Because a null hypothesis is infinitely numerically precise, many nulls cannot be correct 
(reviewed by Nickerson 2000, Hurlbert and Lombardi 2009, and by authors they cite). 
These two null hypotheses in particular—that of uniform variance and perfect sphericity—
must be wrong. Also, if we find that P is greater than alpha and decide that the data are 
good enough to proceed, we are asking if a deviation from perfection is large enough to 
be important. A null hypothesis test cannot answer that question. See also O’Brien and 
Kaiser (1985, pp. 318, 331). 
 
 

  Brand of car tire  
  

A B C 
Marginal 

means and 
sample sizes 

Position 
Front 

x̅ = 40k 
n = 20 

x̅ = 50k 
n = 20 

x̅ = 50k 
n = 20 

x̅ = 46.7k 
n = 60 

Rear 
x̅ = 35k 
n = 19 

x̅ = 40k 
n = 20 

x̅ = 45k 
n = 20 

x̅ = 40k 
n = 59 

 Marginal 
means and 
sample sizes 

x̅ = 37.5k 
n = 39 

x̅ = 45k 
n = 40 

x̅ = 47.5k 
n = 40 
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Varying Variance 
 

Although Tukey tests are highly regarded, they are not robust when variance differs 
among samples, especially when sample size varies as well (Zar 2010, p. 231). If variances 
are not “similar”, to use Zar’s word (Zar 2010, p. 232), one option is to transform the data 
to achieve homogenous variances. We could plot means and CCIs of the transformed data. 
Transformation can change the nature of the question, however. For example, an 
interaction following a log transformation indicates proportional differences, rather than 
absolute differences. Transformation can also fail to equalize variances. In the case of a 
rank transformation, the more the samples overlap, the less successful the transformation 
(section 13.4 in Corotto 2022). 
 
Repeated Measures 
 

A repeated measures ANOVA removes some of the variation among subjects from the 
analysis. This reduces the error term and increases statistical power. Consequently, when 
there is a mixed design, e.g., one within-subjects factor (the repeated measure) and one 
among-subjects factor, there will be two error terms: one for each factor. When 
calculating standard error for CCIs, we must use the correct error term depending on what 
is being compared to what (Loftus and Masson 1994). The error term for the repeated 
measure is usually not indicated by MS error, but by MS remainder or something else. 

But problems arise when there is a lack of sphericity, and there is no 
transformation to correct for this issue. The severity of the problem can be gauged with 
the Greenhouse-Geisser method, the Huynh-Feldt method, and others. Those methods 
produce a statistic, epsilon, which ranges from zero to one, with one indicating perfect 
sphericity. I know of no rule of thumb for deciding if epsilon is large enough to indicate 
that sphericity is satisfactory. It is common to correct the ANOVA by multiplying both of 
the F ratio’s degrees of freedom by epsilon. The more severe the problem, the lower the 
value of epsilon, and the greater the correction. One method that might work to create 
CCIs would be to multiply degrees of freedom by epsilon when finding the critical value 
of q. The CCIs would be corrected just like the ANOVA. Unfortunately, I have not seen 
this method in the literature, and I lack the expertise to test it. 

 
SUMMARY 

 

Much of what I have discussed here has been described before. From what I can tell, the 
strategies for addressing different sample sizes and the problems with Tukey tests are 
mine, as is my advocacy for box-and-whiskers plots and my suggestion of the validation 
strategy illustrated in Figure 3. Because comparative confidence intervals are calculated 
by performing null hypothesis tests backwards, the intervals have the potential to be 
based on tests other than those I discussed. When basing CCIs on other tests, the intervals 
can be validated with the analysis illustrated in Figure 3. 

Confidence intervals are “the best reporting strategy” according to the American 
Psychological Association (APA 2020). Conventional intervals that flank sample means 
provide a range of likely values for population means. When samples are compared, 
however, the relations among the sample means can be more important that the means 
themselves. When means are being compared to each other, comparative confidence 
intervals should be plotted, along with or instead of conventional intervals. 
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Null hypothesis testing has been debated for decades. In fields in which it is termed 
null hypothesis significance testing, always initialized to NHST, the practice of making 
thoughtless yes-or-no decisions based on P values was once rampant. With comparative 
confidence intervals, we can practice thoughtless NHST. We can break out the T-square 
and see precisely what overlaps with what. At the other end of the spectrum, Loftus (1993) 
encouraged plotting means with standard error and abandoning null hypothesis tests. 
With CCIs, we can take Loftus’s advice to an extreme. We can take in the big picture and 
never think about P values. Most of us will choose some strategy in between NHST and 
Loftus’s, and CCIs will serve us well. Comparative confidence intervals make the APA’s 
“best reporting strategy” even better, or at least more appropriate for making multiple 
comparisons. 
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Appendix A 
 

Eight Samples with Similar Variances but Differing Sample Sizes 

 Sample 

 A B C D E F G H 

 0 0 1 1 3 3 3 3 

 1 1 2 2 4 4 4 4 

 2 2 3 3 5 5 5 5 

 3 3 4 4 6 6 6 6 

 4 4 5 5 7 7 7 7 

  0  1 4 3  3 

  1  2 5 7  4 

  2  3 6   5 

  3  4    6 

  4  5    7 

mean 2 2 3 3 5 5 5 5 
variance 2.500 2.222 2.500 2.222 1.714 3.000 2.500 2.222 

SEMa 0.679 0.480 0.679 0.480 0.537 0.574 0.679 0.480 

nb 5 10 5 10 8 7 5 10  
dfc 4 9 4 9 7 6 4 9  
aSEM = standard error of the mean 
bn = sample size 
cdf = degrees of freedom. 

 
 
 

Appendix B 
 

ANOVA Table for the Samples in Appendix A 

Source 
Sum of the 

squares 
df Mean square F P 

Corrected model 101.250a 7 14.464 6.268 < 0.001 

Intercept 770.642 1 770.642 333.945 < 0.001 
Among groups 101.250 7 14.464 6.268 < 0.001 
Within groups 120.000 52 2.308     

Total 1065.000 60       
Corrected total 221.250 59       

Note. The output was generated by SPSS except that the P values were reported 
as .000. 
ar2 = 0.458, adjusted r2 = 0.385. 
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Appendix C 
 

Pairwise Comparisons of All Samples in Appendix A. P values were 
calculated with Tukey-Kramer tests.a 

Pair  P value  Pair  P value  Pair  P value 

A vs B  0.999  B vs E  0.003  D vs E  0.124 

A vs C  0.966  B vs F  0.005  D vs F  0.155 

A vs D  0.928  B vs G  0.015  D vs G  0.261 

A vs E  0.022  B vs H  0.001  D vs H  0.084 

A vs F  0.028  C vs D  0.999  E vs F  0.999 

A vs G  0.055  C vs E  0.308  E vs G  0.999 

A vs H  0.015  C vs F  0.341  E vs H  0.999 

B vs C  0.928  C vs G  0.440  F vs G  0.999 

B vs D  0.818  C vs H  0.261  F vs H  0.999 

        G vs H  0.999 
aResults were obtained from SPSS. Values of 1.000 were changed to 
0.999. 
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