•  
  •  
 

Abstract

The purpose of this work is to provide physics students and teachers with a simple experiment in modern physics, which utilizes modern spectroscopic methods and provides computational modeling of incandescent lamp spectra. Captured spectra are modeled with Planck’s radiation distribution, so that a temperature can be extracted. Voltage across and current through the lamp are recorded at the time of spectra capture, and the power and temperature data are fit with the Stefan-Boltzmann law. This experiment is further expanded by investigating the lamp’s resistance as a function of temperature. It is seen that typical incandescent lamps obtained at local retail stores are great examples of blackbody radiators, while the common energy efficient fluorescent lamps are not.

Share

COinS