Georgia Journal of Science


The purpose of this work is to provide physics students and teachers with a simple experiment in modern physics, which utilizes modern spectroscopic methods and provides computational modeling of incandescent lamp spectra. Captured spectra are modeled with Planck’s radiation distribution, so that a temperature can be extracted. Voltage across and current through the lamp are recorded at the time of spectra capture, and the power and temperature data are fit with the Stefan-Boltzmann law. This experiment is further expanded by investigating the lamp’s resistance as a function of temperature. It is seen that typical incandescent lamps obtained at local retail stores are great examples of blackbody radiators, while the common energy efficient fluorescent lamps are not.